Journal of Biomolecular NMR

, Volume 57, Issue 1, pp 21–26 | Cite as

Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase

  • Sophie Vanwetswinkel
  • Nico A. J. van Nuland
  • Alexander N. VolkovEmail author


Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems.


Paramagnetic NMR Heme proteins Pseudocontact shifts Zero-field splitting 



A.N.V. is an FWO Post-Doctoral Researcher. We thank Yann Streckx for the critical reading of the manuscript. This work was supported by the VIB and the Flemish Hercules Foundation.

Supplementary material

10858_2013_9760_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1219 kb)


  1. Arnesano F, Banci L, Piccioli M (2005) NMR structures of paramagnetic metalloproteins. Q Rev Biophys 38:167–219CrossRefGoogle Scholar
  2. Banci L, Bertini I, Turano P, Ferrer JC, Mauk AG (1991) Comparative 1H NMR study of ferric low-spin cytochrome c peroxidase and horseradish peroxidase. Inorg Chem 30:4510–4516CrossRefGoogle Scholar
  3. Bhaskar B, Poulos TL (2005) The 1.13-Å structure of iron-free cytochrome c peroxidase. J Biol Inorg Chem 10:425–430CrossRefGoogle Scholar
  4. Bonagura CA, Bhaskar B, Shimizu H, Li H, Sundaramoorthy M, McRee DE, Goodin DB, Poulos TL (2003) High-resolution crystal structures and spectroscopy of native and compound I cytochrome c peroxidase. Biochemistry 42:5600–5608CrossRefGoogle Scholar
  5. Bosshard HR, Anni H, Yonetani T (1990) Yeast cytochrome c peroxidase. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. CRC Press, Boca Raton, pp 51–84Google Scholar
  6. Boyd J, Dobson CM, Morar AS, Williams RJP, Pielak GJ (1999) 1H and 15N hyperfine shifts of cytochrome c. J Am Chem Soc 121:9247–9248CrossRefGoogle Scholar
  7. Braun D, Wider G, Wüthrich K (1994) Sequence-corrected 15N “random coil” chemical shifts. J Am Chem Soc 116:8466–8469CrossRefGoogle Scholar
  8. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  9. Edwards SL, Poulos TL (1990) Ligand binding and structural perturbations in cytochrome c peroxidase. A crystallographic study. J Biol Chem 265:2588–2595Google Scholar
  10. Emerson SD, La Mar GN (1990) NMR determination of the orientation of the magnetic susceptibility tensor in cyanometmyoglobin: a new probe of steric tilt of bound ligand. Biochemistry 13:1556–1566CrossRefGoogle Scholar
  11. Erman JE, Vitello LB (2002) Yeast cytochrome c peroxidase: mechanistic studies via protein engineering. Biochim Biophys Acta 1597:193–220CrossRefGoogle Scholar
  12. John M, Park AY, Pintacuda G, Dixon NE, Otting G (2005) Weak alignment of paramagnetic proteins warrants correction for resiudal CSA effects in measurements of pseudocontact shifts. J Am Chem Soc 127:17190–17191CrossRefGoogle Scholar
  13. Kao YH, Lecomte JTJ (1993) Determination of the zero-field splitting constant for proton NMR chemical shift analysis in metaquomyoglobin. The dipolar shift as a structural probe. J Am Chem Soc 115:9754–9762CrossRefGoogle Scholar
  14. La Mar GN, Chen Z, Vyas K, McPherson AD (1995) An interpretive basis of the hyperfine shifts in cyanide-inhibited horseradish peroxidase based on the magnetic axes and ligand tilt. Influence of substrate binding and extensions to other peroxidases. J Am Chem Soc 117:411–419CrossRefGoogle Scholar
  15. La Mar GN, Satterlee J, de Ropp JS (2000) Nuclear magnetic resonance of hemoproteins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic press, San Diego, pp 185–298Google Scholar
  16. Rajarathnam K, La Mar GN, Chiu ML, Sligar SG, Singh JP, Smith KM (1991) 1H NMR hyperfine shift pattern as a probe for ligation state in high-spin ferric hemoproteins: water binding in metmyoglobin mutants. J Am Chem Soc 113:7886–7892CrossRefGoogle Scholar
  17. Satterlee JD, Erman JE (1991) Proton NMR assignments of heme contacts and catalytically implicated amino-acids in cyanide-ligated cytochrome c peroxidase determined from one-dimensional and 2-dimensional nuclear Overhauser effects. Biochemistry 30:4398–4405CrossRefGoogle Scholar
  18. Satterlee JD, Erman JE, Lamar GN, Smith KM, Langry KC (1983) Assignment of hyperfine shifted resonances in high-spin forms of cytochrome c peroxidase by reconstitutions with deuterated hemins. Biochim Biophys Acta 743:246–255CrossRefGoogle Scholar
  19. Schmitz C, John M, Park AY, Dixon NE, Otting G, Pintacuda G, Huber T (2006) Efficient χ-tensor determination and NH assignment of paramagnetic proteins. J Biomol NMR 35:79–87CrossRefGoogle Scholar
  20. Schmitz C, Stanton-Cook MJ, Su X-C, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189CrossRefGoogle Scholar
  21. Tsan P, Caffrey M, Daku ML, Cusanovich M, Marion D, Gans P (2001) Magnetic susceptibility tensor and heme contact shifts determination in the Rhodobacter capsulatus ferricytochrome c’: NMR and magnetic susceptibility studies. J Am Chem Soc 123:2231–2242CrossRefGoogle Scholar
  22. Ubbink M, Worrall JAR, Canters GW, Groenen EJJ, Huber M (2002) Paramagnetic resonance of biological metal centers. Annu Rev Biophys Biomol Struct 31:393–422CrossRefGoogle Scholar
  23. Volkov AN, Vanwetswinkel S, Van de Water K, van Nuland NAJ (2012) Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy. J Biomol NMR 52:245–256CrossRefGoogle Scholar
  24. Volkov AN, Wohlkonig A, Soror SH, van Nuland NAJ (2013) Expression, purification, characterization, and solution nuclear magnetic resonance study of highly-deuterated yeast cytochrome c peroxidase with enhanced solubility. Biochemistry 52:2165–2175CrossRefGoogle Scholar
  25. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696CrossRefGoogle Scholar
  26. Walker FA (2000) Proton NMR and EPR spectroscopy of paramagnetic metalloporphyrins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic press, San Diego, pp 81–184Google Scholar
  27. Walker FA, La Mar GN (1973) Nuclear magnetic resonance studies of ferric porphyrins. Ann N Y Acad Sci 206:328–348ADSCrossRefGoogle Scholar
  28. Yonetani T, Anni H (1987) Yeast cytochrome c peroxidase. Coordination and spin states of heme prosthetic group. J Biol Chem 262:9547–9554Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sophie Vanwetswinkel
    • 1
    • 2
  • Nico A. J. van Nuland
    • 1
    • 2
  • Alexander N. Volkov
    • 1
    • 2
    Email author
  1. 1.Jean Jeener NMR Centre, Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Structural BiologyVIBBrusselsBelgium

Personalised recommendations