Journal of Biomolecular NMR

, Volume 56, Issue 4, pp 331–335

Divide and conquer is always best: sensitivity of methyl correlation experiments

  • Kaustubh Sinha
  • Linda Jen-Jacobson
  • Gordon S. Rule


The HMCM [CG]CBCA experiment (Tugarinov and Kay in J Am Chem Soc 125:13868–13878, 2003) correlates methyl carbon and proton shifts to Cγ, Cβ, and Cα resonances for the purpose of resonance assignments. The relative sensitivity of the HMCM[CG]CBCA sequence experiment is compared to a divide-and-conquer approach to assess whether it is best to collect all of the methyl correlations at once, or to perform separate experiments for each correlation. A straightforward analysis shows that the divide-and-conquer approach is intrinsically more sensitive, and should always be used to obtain methyl-Cγ, Cβ, and Cα correlations. The improvement in signal-to-noise associated with separate experiments is illustrated by the detection of methyl-aliphatic correlations in a 65 kDa protein-DNA complex.


Methyl resonance assignment Protein-DNA complex Pulse sequence 

Supplementary material

10858_2013_9751_MOESM1_ESM.docx (240 kb)
Supplementary material 1 (DOCX 240 kb)


  1. Ayala I, Sounier R, Use N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119CrossRefGoogle Scholar
  2. Baldwin AJ, Religa TL, Hansen DF, Bouvignies G, Kay LE (2010) 13CHD2 methyl group probes of millisecond time scale exchange in proteins by 1H relaxation dispersion: an application to proteasome gating residue dynamics. J Am Chem Soc 132(32):10992–10995. doi:10.1021/ja104578n CrossRefGoogle Scholar
  3. Biswas S, Guharoy M, Chakrabarti P (2009) Dissection, residue conservation, and structural classification of protein-DNA interfaces. Proteins 74:643–654CrossRefGoogle Scholar
  4. Briercheck DM, Wood TC, Allison TJ, Richardson JP, Rule GS (1998) The NMR structure of the RNA binding domain of E. coli rho factor suggests possible RNA-protein interactions. Nat Struct Biol 5:393–399CrossRefGoogle Scholar
  5. Chan PH, Weissbach S, Okon M, Withers SG, McIntosh LP (2012) Nuclear magnetic resonance spectral assignments of α-1,4-galactosyltransferase LgtC from neisseria meningitidis: substrate binding and multiple conformational states. Biochemistry 51:8278–8292CrossRefGoogle Scholar
  6. Fernandez C, Wider G (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13:570–580CrossRefGoogle Scholar
  7. Gardner KH, Zhang X, Gehring K, Kay LE (1998) Solution NMR Studies of a 42 KDa Escherichia Coli Maltose Binding Protein/β-Cyclodextrin Complex: chemical Shift Assignments and Analysis. J Am Chem Soc 120(45):11738–11748. doi:10.1021/ja982019w CrossRefGoogle Scholar
  8. Göbl C, Tjandra N (2012) Application of solution NMR spectroscopy to study protein dynamics. Entropy 14(3):581–598. doi:10.3390/e14030581 CrossRefGoogle Scholar
  9. Goto NK, Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 10:585–592CrossRefGoogle Scholar
  10. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374CrossRefGoogle Scholar
  11. John M, Schmitz C, Park AY, Dixon NE, Huber T, Otting G (2007) Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides. J Am Chem Soc 7:13749–13757CrossRefGoogle Scholar
  12. Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta. doi:10.1016/j.bbapap.2010.10.012 Google Scholar
  13. Krejcirikova A, Tugarinov V (2012) 3D-TROSY-based backbone and ILV-methyl resonance assignments of a 319-residue homodimer from a single protein sample. J Biomol NMR 54:135–143. doi:10.1007/s10858-012-9667-9 CrossRefGoogle Scholar
  14. LeMaster DM, Richards FM (1988) NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteriation. Biochemistry 27:142–150CrossRefGoogle Scholar
  15. Markwick PR, Malliavin T, Nilges M (2008) Structural biology by NMR: structure, dynamics, and interactions. PLoS Comput Biol 4(9):e1000168. doi:10.1371/journal.pcbi.1000168 CrossRefGoogle Scholar
  16. McCallum SA, Hitchens TK, Rule GS (1999) Solution structure of the carboxyl terminus of a human class mu glutathione s-transferase: NMR assignment strategies in large proteins. J Mol Biol 285:2119–2132CrossRefGoogle Scholar
  17. Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228ADSCrossRefGoogle Scholar
  18. Mueller GA, Choy WY, Yang D, Forman-Kay JD, Venters RA, Kay LE (2000) Global folds of proteins with low densities of noes using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. J Mol Biol 300:197–212CrossRefGoogle Scholar
  19. Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46:75–87. doi:10.1007/s10858-009-9376-1 CrossRefGoogle Scholar
  20. Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci U S A. 95(23):13585–13590ADSCrossRefGoogle Scholar
  21. Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (2000) NMR Assignment and Secondary Structure Determination of an Octameric 110 kDa Protein Using TROSY in Triple Resonance Experiments. J Am Chem Soc 122:7543–7548. doi:10.1021/ja0003268 CrossRefGoogle Scholar
  22. Sattler M, Fesik SW (1996) Use of deuterium labeling in NMR: overcoming a sizeable problem. Structure 4:1245–1249CrossRefGoogle Scholar
  23. Shajani Z, Varani G (2007) NMR studies of dynamics in RNA and DNA by 13C relaxation. Biopolymers 86:348–359. doi:10.1002/bip.20650 CrossRefGoogle Scholar
  24. Sinha K, Jen-Jacobson L, Rule GS (2011) Specific labeling of threonine methyl groups for NMR studies of protein-nucleic acid complexes. Biochemistry 50:10189–10191. doi:10.1021/bi201496d CrossRefGoogle Scholar
  25. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622. doi:10.1038/nature05512 CrossRefGoogle Scholar
  26. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234Google Scholar
  27. Tugarinov V, Kay LE (2003) Ile, Leu, and Val Methyl Assignments of the 723-Residue Malate Synthase G Using a New Labeling Strategy and Novel NMR Methods. J Am Chem Soc 125:13868–13878. doi:10.1021/ja030345s CrossRefGoogle Scholar
  28. Tugarinov V, Kay LE (2005) Quantitative 13C and 2H NMR relaxation studies of the 723-residue enzyme malate synthase G reveal a dynamic binding interface. Biochemistry 44:15970–15977. doi:10.1021/bi0519809 CrossRefGoogle Scholar
  29. Tzakos AG, Grace CRR, Lukavsky PJ, Riek R (2006) NMR Techniques for Very Large Proteins and RNAs in Solution. Annu Rev Biophys Biomol Struct 35:319–342CrossRefGoogle Scholar
  30. Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS ONE 7(9):e43725. doi:10.1371/journal.pone.0043725 ADSCrossRefGoogle Scholar
  31. Venditti V, Fawzi NL, Clore GM (2011) Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl–methyl nuclear Overhauser enhancement spectroscopy. J Biomol NMR 51:319–328CrossRefGoogle Scholar
  32. Wang X, Vu A, Lee K, Dahlquist FW (2012) CheA–Receptor Interaction Sites in Bacterial Chemotaxis. J Mol Biol 422:282–290. doi:10.1016/j.jmb.2012.05.023 CrossRefGoogle Scholar
  33. Xu Y, Matthews S (2013) MAP-XSII: an improved program for the automatic assignment of methyl resonances in large proteins. J Biomol NMR 55:179–187. doi:10.1007/s10858-012-9700-z CrossRefGoogle Scholar
  34. Zhuravleva A, Clerico EM, Gierasch LM (2012) An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151:1296–1307CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kaustubh Sinha
    • 1
  • Linda Jen-Jacobson
    • 2
  • Gordon S. Rule
    • 1
  1. 1.Department of Biological SciencesCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations