Advertisement

Journal of Biomolecular NMR

, Volume 56, Issue 3, pp 227–241 | Cite as

Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

  • Yang Shen
  • Ad Bax
Article

Abstract

A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (ϕ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ1 rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

Keywords

Heteronuclear chemical shift Secondary structure Backbone and sidechain conformation Dynamics TALOS Order parameter Protein structure SPARTA 

Notes

Acknowledgments

We thank Frank Delaglio for assistance and useful discussions. This work was funded by the Intramural Research Program of the NIDDK, NIH.

Supplementary material

10858_2013_9741_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1039 kb)

References

  1. Berjanskii MV, Wishart DS (2008) Application of the random coil index to studying protein flexibility. J Biomol NMR 40:31–48CrossRefGoogle Scholar
  2. Berjanskii MV, Neal S, Wishart DS (2006) PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res 34:W63–W69CrossRefGoogle Scholar
  3. Berman HM, Kleywegt GJ, Nakamura H, Markley JL (2012) The protein data bank at 40: reflecting on the past to prepare for the future. Structure 20:391–396CrossRefGoogle Scholar
  4. Bower MJ, Cohen FE, Dunbrack RL (1997) Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol 267:1268–1282CrossRefGoogle Scholar
  5. Butterfoss GL, Richardson JS, Hermans J (2005) Protein imperfections: separating intrinsic from extrinsic variation of torsion angles. Acta Crystallogr Sect D-Biol Crystallogr 61:88–98CrossRefGoogle Scholar
  6. Case DA (1995) Calibration of ring-current effects in proteins and nucleic acids. J Biomol NMR 6:341–346CrossRefGoogle Scholar
  7. Cheung M-S, Maguire ML, Stevens TJ, Broadhurst RW (2010) DANGLE: a Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J Magn Reson 202:223–233ADSCrossRefGoogle Scholar
  8. Chou JJ, Bax A (2001) Protein side-chain rotamers from dipolar couplings in a liquid crystalline phase. J Am Chem Soc 123:3844–3845CrossRefGoogle Scholar
  9. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302CrossRefGoogle Scholar
  10. Czinki E, Csaszar AG (2007) Empirical isotropic chemical shift surfaces. J Biomol NMR 38:269–287CrossRefGoogle Scholar
  11. de Dios AC, Pearson JG, Oldfield E (1993) Secondary and tertiary structural effects on protein NMR chemical shifts—an ab initio approach. Science 260:1491–1496ADSCrossRefGoogle Scholar
  12. Dunbrack RL, Karplus M (1994) Conformational analysis of the backbone-dependent rotamer preferences of protein side-chains. Nature Structur Biol 1:334–340CrossRefGoogle Scholar
  13. Dzakula Z, Edison AS, Westler WM, Markley JL (1992a) Analysis of χ1 rotamer populations from NMR data by the Cupid method. J Am Chem Soc 114:6200–6207CrossRefGoogle Scholar
  14. Dzakula Z, Westler WM, Edison AS, Markley JL (1992b) The Cupid method for calculating the continuous probability- distribution of rotamers from NMR data. J Am Chem Soc 114:6195–6199CrossRefGoogle Scholar
  15. Ester, M, Kriegel, HP, Sander, J and Xu, XW (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the second international conference on knowledge discovery and data mining (KDD-96). In: Simoudis E, Han J, Fayyad UM, AAAI Press: 226–231Google Scholar
  16. Ginzinger SW, Coles M (2009) SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database. J Biomol NMR 43:179–185CrossRefGoogle Scholar
  17. Haigh CW, Mallion RB (1979) Ring current theories in nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc 13:303–344CrossRefGoogle Scholar
  18. Han B, Liu YF, Ginzinger SW, Wishart DS (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57CrossRefGoogle Scholar
  19. Huang KY, Amodeo GA, Tong LA, McDermott A (2012) The structure of human ubiquitin in 2-methyl-2,4-pentanediol: a new conformational switch. Protein Sci 20:630–639CrossRefGoogle Scholar
  20. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202CrossRefGoogle Scholar
  21. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637CrossRefGoogle Scholar
  22. Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131:13894–13895CrossRefGoogle Scholar
  23. Koonin EV, Galperin MY (eds) (2003) Sequence - Evolution - Function: Computational Approaches in Comparative Genomics. Boston, Kluwer AcademicGoogle Scholar
  24. Kryshtafovych A, Fidelis K, Moult J (2011) CASP9 results compared to those of previous CASP experiments. Proteins-Struct Funct Bioinformat 79:196–207CrossRefGoogle Scholar
  25. Kuszewski J, Qin J, Gronenborn AM, Clore GM (1995) The impact of direct refinement against 13Cα and 13Cβ chemical-shifts on protein-structure determination by NMR. J Magn Reson Ser B 106:92–96CrossRefGoogle Scholar
  26. Li DW, Bruschweiler R (2012) PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles. J Biomol NMR 54:257–265CrossRefGoogle Scholar
  27. Li DW, Brüschweiler R (2010) Certification of molecular dynamics trajectories with NMR chemical shifts. J Physic Chem Lett 1:246–248CrossRefGoogle Scholar
  28. Markley JL, Ulrich EL, Berman HM, Henrick K, Nakamura H, Akutsu H (2008) BioMagResBank (BMRB) as a partner in the worldwide protein data bank (wwPDB): new policies affecting biomolecular NMR depositions. J Biomol NMR 40:153–155CrossRefGoogle Scholar
  29. Miclet E, Boisbouvier J, Bax A (2005) Measurement of eight scalar and dipolar couplings for methine-methylene pairs in proteins and nucleic acids. J Biomol NMR 31:201–216CrossRefGoogle Scholar
  30. Mittermaier A, Kay LE (2001) χ1 torsion angle dynamics in proteins from dipolar couplings. J Am Chem Soc 123:6892–6903CrossRefGoogle Scholar
  31. Moon S, Case DA (2007) A new model for chemical shifts of amide hydrogens in proteins. J Biomol NMR 38:139–150CrossRefGoogle Scholar
  32. Neal S, Nip AM, Zhang HY, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J Biomol NMR 26:215–240CrossRefGoogle Scholar
  33. Nielsen JT, Eghbalnia HR, Nielsen NC (2012) Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Prog Nucl Magn Reson Spectrosc 60:1–28CrossRefGoogle Scholar
  34. Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M (2010) Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure 18:923–933CrossRefGoogle Scholar
  35. Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70 percent accuracy. J Mol Biol 232:584–599CrossRefGoogle Scholar
  36. Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M (2011) Structure-based prediction of methyl chemical shifts in proteins. J Biomol NMR 50:331–346CrossRefGoogle Scholar
  37. Saito H (1986) Conformation-dependent 13C chemical shifts—A new means of conformational characterization as obtained by high resolution solid state 13C NMR. Magn Reson Chem 24:835–852CrossRefGoogle Scholar
  38. Schmidt JM (2012) Transforming between discrete and continuous angle distribution models: application to protein χ1 torsions. J Biomol NMR 54:97–114CrossRefGoogle Scholar
  39. Shapovalov MV, Dunbrack RL (2011) A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19:844–858CrossRefGoogle Scholar
  40. Shen Y, Bax A (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38:289–302CrossRefGoogle Scholar
  41. Shen Y, Bax A (2010) SPARTA-plus : a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22CrossRefGoogle Scholar
  42. Shen Y, Bax A (2012) Identification of helix capping and beta-turn motifs from NMR chemical shifts. J Biomol NMR 52:211–232CrossRefGoogle Scholar
  43. Shen Y, Delaglio F, Cornilescu G, Bax A (2009a) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223CrossRefGoogle Scholar
  44. Shen Y, Vernon R, Baker D, Bax A (2009b) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78CrossRefGoogle Scholar
  45. Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492CrossRefGoogle Scholar
  46. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544CrossRefGoogle Scholar
  47. Vila JA, Aramini JM, Rossi P, Kuzin A, Su M, Seetharaman J, Xiao R, Tong L, Montelione GT, Scheraga HA (2008) Quantum chemical 13Cα chemical shift calculations for protein NMR structure determination, refinement, and validation. Proc Natl Acad Sci USA 105:14389–14394ADSCrossRefGoogle Scholar
  48. Vila JA, Arnautova YA, Martin OA, Scheraga HA (2009) Quantum-mechanics-derived 13Cα chemical shift server (CheShift) for protein structure validation. Proc Natl Acad Sci USA 106:16972–16977ADSCrossRefGoogle Scholar
  49. Vila JA, Serrano P, Wuethrich K, Scheraga HA (2010) Sequential nearest-neighbor effects on computed 13Cα chemical shifts. J Biomol NMR 48:23–30CrossRefGoogle Scholar
  50. Villegas ME, Vila JA, Scheraga HA (2007) Effects of side-chain orientation on the 13C chemical shifts of antiparallel beta-sheet model peptides. J Biomol NMR 37:137–146CrossRefGoogle Scholar
  51. Williamson MP, Asakura T (1993) Empirical comparisons of models for chemical-shift calculation in proteins. J Magn Reson B 101:63–71CrossRefGoogle Scholar
  52. Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Magn Reson Spectrosc 58:62–87CrossRefGoogle Scholar
  53. Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333CrossRefGoogle Scholar
  54. Xu XP, Case DA (2001) Automated prediction of 15N, 13Cα, 13Cβ and 13C’ chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations