Journal of Biomolecular NMR

, Volume 55, Issue 3, pp 291–302

Pulse design for broadband correlation NMR spectroscopy by multi-rotating frames

Article

Abstract

We present a method for designing radio-frequency (RF) pulses for broadband or multi-band isotropic mixing at low power, suitable for protein NMR spectroscopy. These mixing pulses are designed analytically, rather than by numerical optimization, by repeatedly constructing new rotating frames of reference. We show how pulse parameters can be chosen frame-by-frame to systematically reduce the effective chemical shift bandwidth, but maintain most of the effective J-coupling strength. The effective Hartmann-Hahn mixing condition is then satisfied in a multi-rotating frame of reference. This design method yields multi-band and broadband mixing pulses at low RF power. In particular, the ratio of RF power to mixing bandwidth for these pulses is lower than for existing mixing pulses, such as DIPSI and FLOPSY. Carbon-carbon TOCSY experiments at low RF power support our theoretical analysis.

Keywords

NMR Pulse design Isotropic mixing TOCSY HOHAHA 

References

  1. Bennett AE, Gross JD, Wagner G (2003) Broadband 13C–13C adiabatic mixing in solution optimized for high fields. J Magn Reson 165(1):59–79ADSCrossRefGoogle Scholar
  2. Bloch F, Siegert A (1940) Magnetic resonance for nonrotating fields. Phys Rev 57:522–527ADSCrossRefGoogle Scholar
  3. Braunschweiler L, Ernst R (1983) Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J Magn Reson 53:521–528Google Scholar
  4. Burton R, Hunt J, Fierke C, Oas T (2000) Novel disulfide engineering in human carbonic anhydrase ii using the pairwise side-chain geometry database. Protein Sci 9:776–785CrossRefGoogle Scholar
  5. Carlomagno T, Maurer M, Sattler M, Schwendinger MG, Glaser SJ, Griesinger C (1996) PLUSH TACSY: Homonuclear planar TACSY with two-band selective shaped pulses applied to \(C^{\alpha}, C^{\prime} C^{\beta}, C^{aromatic}\) correlations. J Biomol NMR 8:161–170CrossRefGoogle Scholar
  6. Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ, Rance M (2006) Protein NMR spectroscopy: principles and practice, 2nd edn. Academic Press, San DiegoGoogle Scholar
  7. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clerendon Press, OxfordGoogle Scholar
  8. Floquet G (1883) Sur les equations differentielles lineaires a coefficients periodiques. Annales de l’Ecole Normale Superieure 12:47–88MathSciNetMATHGoogle Scholar
  9. Glaser SJ, Quant JJ (1996) Homonuclear and heteronuclear Hartmann-Hahn transfer in isotropic liquids. Adv Magn Opt Reson 19:59–252CrossRefGoogle Scholar
  10. Grzesiek S, Bax A (1995) Audio-frequency NMR in a nutating frame. application to the assignment of phenylalanine residues in isotopically enriched proteins. J Am Chem Soc 117(24):6527–6531CrossRefGoogle Scholar
  11. Haeberlen U (1976) High resolution NMR in solids: selective averaging. Academic Press, New YorkGoogle Scholar
  12. Haeberlen U, Waugh JS (1968) Coherent averaging effects in magnetic resonance. Phys Rev 175:453–467ADSCrossRefGoogle Scholar
  13. Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053ADSMATHCrossRefGoogle Scholar
  14. Hedges L, Hoult D (1988) The techniques of rotating frame selective excitation and some experimental results. J Magn Reson 79(3):391–403Google Scholar
  15. Hoult D (1980) NMR imaging, rotating frame selective pulses. J Magn Reson 38(2):369–374Google Scholar
  16. Kadkhodaie M, Rivas O, Tan M, Mohebbi A, Shaka A (1991) Broadband homonuclear cross polarization using flip-flop spectroscopy. J Magn Reson 91(2):437–443Google Scholar
  17. Klarsfeld S, Oteo JA (1989) Recursive generation of higher-order terms in the Magnus expansion. Phys Rev A 39:3270–3273ADSCrossRefGoogle Scholar
  18. Leskes M, Madhu PK, Vega S (2010) Floquet theory in solid-state nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc 57(4):345–380CrossRefGoogle Scholar
  19. Llor A (1992) Equivalence between dynamical averaging methods of the Schrödinger equation: average Hamiltonian, secular averaging, and Van Vleck transformation. Chem Phys Lett 199(3–4):383–390ADSCrossRefGoogle Scholar
  20. Magnus W (1954) On the exponential solution of differential equations for a linear operator. Commun Pur Appl Math 7(4):649–673MathSciNetMATHCrossRefGoogle Scholar
  21. Malia T, Wagner G (2007) NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 46(2):514–525CrossRefGoogle Scholar
  22. Müller L, Ernst R (1979) Coherence transfer in the rotating frame. Mol Phys 38(3):963–992ADSCrossRefGoogle Scholar
  23. Rucker S, Shaka A (1989) Broadband homonuclear cross polarization in 2D NMR using DIPSI-2. Mol Phys 68(2):509–517ADSCrossRefGoogle Scholar
  24. Sacolick LI, Wiesinger F, Hancu I, Vogel MW (2010) B1 mapping by Bloch-Siegert shift. Magn Reson Med 63(5):1315–1322CrossRefGoogle Scholar
  25. Zhang Z, Miao Y, Liu X, Yang J, Li C, Deng F, Fu R (2012) Dual-band selective double cross polarization for heteronuclear polarization transfer between dilute spins in solid-state MAS NMR. J Magn Reson 217(0):92–99ADSCrossRefGoogle Scholar
  26. Zuiderweg ER, Zeng L, Brutscher B, Morshauser RC (1996) Band-selective hetero- and homonuclear cross-polarization using trains of shaped pulses. J Biomol NMR 8:147–160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Paul Coote
    • 1
  • Haribabu Arthanari
    • 2
  • Tsyr-Yan Yu
    • 2
  • Amarnath Natarajan
    • 3
  • Gerhard Wagner
    • 2
  • Navin Khaneja
    • 1
  1. 1.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA
  3. 3.Eppley Institute for Cancer ResearchUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations