Journal of Biomolecular NMR

, Volume 54, Issue 3, pp 217–236 | Cite as

Cell signaling, post-translational protein modifications and NMR spectroscopy

  • Francois-Xavier Theillet
  • Caroline Smet-Nocca
  • Stamatios Liokatis
  • Rossukon Thongwichian
  • Jonas Kosten
  • Mi-Kyung Yoon
  • Richard W. Kriwacki
  • Isabelle Landrieu
  • Guy Lippens
  • Philipp SelenkoEmail author


Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.


Histones p53 CBP/p300 Sic1 Tau Integrin b3 p21 KID Pyk2 HPr 



We would like to thank Rachel Klevit, Olga Vinogradova, Tanja Mittag and Julie Forman-Kay for providing original NMR spectra for reproduction in this manuscript. F.X.T. acknowledges support from the Association pour la Researche contre le Cancer (ARC). P.S. acknowledges funding by an Emmy Noether research grant (SE1794/1-1) from the Deutsche Forschungsgemeinschaft (DFG). R. W. K. acknowledges support from NIH core grant P30CA21765 (to St. Jude Children’s Research Hospital) and 5R01CA082491 (to R. W. K.), and the American Lebanese Syrian Associated Charities (ALSAC) of St. Jude Children’s Research Hospital. We further express our gratitude to Angela Gronenborn and Georges Mer for expert advice and stimulating discussions in the course of writing the paper.

Supplementary material

10858_2012_9674_MOESM1_ESM.pdf (391 kb)
Supplementary material 1 (PDF 391 kb)


  1. Abraham SJ, Kobayashi T, Solaro RJ, Gaponenko V (2009) Differences in lysine pKa values may be used to improve NMR signal dispersion in reductively methylated proteins. J Biomol NMR 43(4):239–246Google Scholar
  2. Alavi A, Axford JS (2008) Sweet and sour: the impact of sugars on disease. Rheumatology (Oxf) 47(6):760–770Google Scholar
  3. Amniai L, Lippens G, Landrieu I (2011) Characterization of the AT180 epitope of phosphorylated Tau protein by a combined nuclear magnetic resonance and fluorescence spectroscopy approach. Biochem Biophys Res Commun 412(4):743–746Google Scholar
  4. Andreotti AH (2003) Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42(32):9515–9524Google Scholar
  5. Andrew CD, Warwicker J, Jones GR, Doig AJ (2002) Effect of phosphorylation on alpha-helix stability as a function of position. Biochemistry 41(6):1897–1905Google Scholar
  6. Antz C, Bauer T, Kalbacher H, Frank R, Covarrubias M, Kalbitzer HR, Ruppersberg JP, Baukrowitz T, Fakler B (1999) Control of K+ channel gating by protein phosphorylation: structural switches of the inactivation gate. Nat Struct Biol 6(2):146–150Google Scholar
  7. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50Google Scholar
  8. Ashfield JT, Meyers T, Lowne D, Varley PG, Arnold JR, Tan P, Yang JC, Czaplewski LG, Dudgeon T, Fisher J (2000) Chemical modification of a variant of human MIP-1alpha; implications for dimer structure. Protein Sci 9(10):2047–2053Google Scholar
  9. Attwood PV, Ludwig K, Bergander K, Besant PG, Adina-Zada A, Krieglstein J, Klumpp S (2010) Chemical phosphorylation of histidine-containing peptides based on the sequence of histone H4 and their dephosphorylation by protein histidine phosphatase. Biochim Biophys Acta 1804(1):199–205Google Scholar
  10. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395Google Scholar
  11. Barb AW, Prestegard JH (2011) NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol 7(3):147–153Google Scholar
  12. Barb AW, Freedberg DI, Battistel MD, Prestegard JH (2011) NMR detection and characterization of sialylated glycoproteins and cell surface polysaccharides. J Biomol NMR 51(1–2):163–171Google Scholar
  13. Barb AW, Meng L, Gao Z, Johnson RW, Moremen KW, Prestegard JH (2012) NMR Characterization of immunoglobulin G Fc glycan motion on enzymatic sialylation. Biochemistry 4618–4626Google Scholar
  14. Barth TK, Imhof A (2010) Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci 35(11):618–626Google Scholar
  15. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13Google Scholar
  16. Bedford MT, Richard S (2005) Arginine methylation an emerging regulator of protein function. Mol Cell 18(3):263–272Google Scholar
  17. Berndsen CE, Denu JM (2008) Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol 18(6):682–689Google Scholar
  18. Besant PG, Attwood PV (2005) Mammalian histidine kinases. Biochim Biophys Acta 1754(1–2):281–290Google Scholar
  19. Besant PG, Attwood PV (2010) Histidine phosphorylation in histones and in other mammalian proteins. Methods Enzymol 471:403–426Google Scholar
  20. Bhat AH, Mondal H, Chauhan JS, Raghava GP, Methi A, Rao A (2011) ProGlycProt: a repository of experimentally characterized prokaryotic glycoproteins. Nucleic Acids Res 40(Database issue) D388–D393Google Scholar
  21. Bheda P, Wang JT, Escalante-Semerena JC, Wolberger C (2011) Structure of Sir2Tm bound to a propionylated peptide. Protein Sci 20(1):131–139Google Scholar
  22. Bielska AA, Zondlo NJ (2006) Hyperphosphorylation of Tau induces local polyproline II helix. Biochemistry 45(17):5527–5537Google Scholar
  23. Bienkiewicz EA, Lumb KJ (1999) Random-coil chemical shifts of phosphorylated amino acids. J Biomol NMR 15(3):203–206Google Scholar
  24. Bonasio R, Lecona E, Reinberg D (2010) MBT domain proteins in development and disease. Semin Cell Dev Biol 21(2):221–230Google Scholar
  25. Brockhausen I, Schachter H, Stanley P (2009) O-GalNAc glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  26. Brown NR, Noble ME, Endicott JA, Johnson LN (1999) The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1(7):438–443Google Scholar
  27. Byeon IJ, Li H, Song H, Gronenborn AM, Tsai MD (2005) Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67. Nat Struct Mol Biol 12(11):987–993Google Scholar
  28. Campaner S, Spreafico F, Burgold T, Doni M, Rosato U, Amati B, Testa G (2011) The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol Cell 43(4):681–688Google Scholar
  29. Chen YX, Du JT, Zhou LX, Liu XH, Zhao YF, Nakanishi H, Li YM (2006) Alternative O-GicNAcylation/O-phosphorylation of Ser(16) induce different conformational disturbances to the N terminus of murine estrogen receptor beta. Chem Biol 13(9):937–944Google Scholar
  30. Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W, Zhao Y (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 6(5):812–819Google Scholar
  31. Chen C, Nott TJ, Jin J, Pawson T (2011) Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol 12(10):629–642Google Scholar
  32. Cheng Z, Tang Y, Chen Y, Kim S, Liu H, Li SS, Gu W, Zhao Y (2009) Molecular characterization of propionyllysines in non-histone proteins. Mol Cell Proteomics 8(1):45–52Google Scholar
  33. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840ADSGoogle Scholar
  34. Cohen P (2002a) Protein kinases–the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309–315Google Scholar
  35. Cohen P (2002b) The origins of protein phosphorylation. Nat Cell Biol 4(5):E127–130Google Scholar
  36. Coltart DM, Royyuru AK, Williams LJ, Glunz PW, Sames D, Kuduk SD, Schwarz JB, Chen XT, Danishefsky SJ, Live DH (2002) Principles of mucin architecture: structural studies on synthetic glycopeptides bearing clustered mono-, di-, tri-, and hexasaccharide glycodomains. J Am Chem Soc 124(33):9833–9844Google Scholar
  37. Copeland RA, Solomon ME, Richon VM (2009) Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 8(9):724–732Google Scholar
  38. Corzana F, Busto JH, Engelsen SB, Jimenez-Barbero J, Asensio JL, Peregrina JM, Avenoza A (2006a) Effect of beta-O-glucosylation on L-Ser and L-Thr diamides: a bias toward alpha-helical conformations. Chem-Eur J 12(30):7864–7871Google Scholar
  39. Corzana F, Busto JH, Jimenez-Oses G, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A (2006b) New insights into alpha-GalNAc-Ser motif: influence of hydrogen bonding versus solvent interactions on the preferred conformation. J Am Chem Soc 128(45):14640–14648Google Scholar
  40. Corzana F, Busto JH, Jimenez-Oses G, de Luis MG, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A (2007) Serine versus threonine glycosylation: the methyl group causes a drastic alteration on the carbohydrate orientation and on the surrounding water shell. J Am Chem Soc 129(30):9458–9467Google Scholar
  41. Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol BioSyst 5(10):1087–1104Google Scholar
  42. Dehennaut V, Hanoulle X, Bodart JF, Vilain JP, Michalski JC, Landrieu I, Lippens G, Lefebvre T (2008) Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry. Biochem Biophys Res Commun 369(2):539–546Google Scholar
  43. Del Rizzo PA, Trievel RC (2011) Substrate and product specificities of SET domain methyltransferases. Epigenetics 6(9):1059–1067Google Scholar
  44. DeMarco ML, Woods RJ (2008) Structural glycobiology: a game of snakes and ladders. Glycobiology 18(6):426–440Google Scholar
  45. Deshmukh L, Meller N, Alder N, Byzova T, Vinogradova O (2011) Tyrosine phosphorylation as a conformational switch: a case study of integrin beta3 cytoplasmic tail. J Biol Chem 286(47):40943–40953Google Scholar
  46. Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031Google Scholar
  47. Dose A, Liokatis S, Theillet FX, Selenko P, Schwarzer D (2011) NMR profiling of histone deacetylase and acetyl-transferase activities in real time. ACS Chem Biol 6(5):419–424Google Scholar
  48. Du JT, Li YM, Wei W, Wu GS, Zhao YF, Kanazawa K, Nemoto T, Nakanishi H (2005) Low-barrier hydrogen bond between phosphate and the amide group in phosphopeptide. J Am Chem Soc 127(47):16350–16351Google Scholar
  49. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057):806–809ADSGoogle Scholar
  50. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208Google Scholar
  51. Egorova KS, Olenkina OM, Olenina LV (2010) Lysine methylation of nonhistone proteins is a way to regulate their stability and function. Biochemistry (Mosc) 75(5):535–548Google Scholar
  52. Eichler J, Adams MW (2005) Posttranslational protein modification in Archaea. Microbiol Mol Biol Rev 69(3):393–425Google Scholar
  53. Erbel PJA, Karimi-Nejad Y, van Kuik JA, Boelens R, Kamerling JP, Vliegenthart JFG (2000) Effects of the N-linked glycans on the 3D structure of the free alpha-subunit of human chorionic gonadotropin. Biochemistry 39(20):6012–6021Google Scholar
  54. Erce MA, Pang CN, Hart-Smith G, Wilkins MR (2012) The methylproteome and the intracellular methylation network. Proteomics 12:1–23Google Scholar
  55. Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA (2012) Characterization of semisynthetic and naturally N alpha-acetylated alpha-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of alpha-synuclein. J Biol Chem 287(34):28243–28262Google Scholar
  56. Fletcher CM, Harrison RA, Lachmann PJ, Neuhaus D (1994) Structure of a soluble, glycosylated form of the human-complement regulatory protein Cd59. Structure 2(3):185–199Google Scholar
  57. Freeze HH, Haltiwanger RS (2009) Other classes of ER/golgi-derived glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  58. Fullgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30(31):3391–3403Google Scholar
  59. Gao J, Xu D (2012) Correlation between posttranslational modification and intrinsic disorder in protein. Pac Symp Biocomput 94–103Google Scholar
  60. Gardino AK, Yaffe MB (2011) 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol 22(7):688–695Google Scholar
  61. Garrett DS, Seok YJ, Peterkofsky A, Clore GM, Gronenborn AM (1998) Tautomeric state and pKa of the phosphorylated active site histidine in the N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system. Protein Sci 7(3):789–793Google Scholar
  62. Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC (2007) N-lysine propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem 282(41):30239–30245Google Scholar
  63. Graff J, Kim D, Dobbin MM, Tsai LH (2011) Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 91(2):603–649Google Scholar
  64. Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB, Jakel H, Kullmann M, Kriwacki RW, Hengst L (2007) Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128(2):269–280Google Scholar
  65. Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (2010) Histone methylation regulates memory formation. J Neurosci 30(10):3589–3599Google Scholar
  66. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42Google Scholar
  67. Han S, Brunet A (2012) Histone methylation makes its mark on longevity. Trends Cell Biol 22(1):42–49Google Scholar
  68. Hart GW, Akimoto Y (2009) The O-GlcNAc modification. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  69. Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143(5):672–676Google Scholar
  70. Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446(7139):1017–1022ADSGoogle Scholar
  71. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858Google Scholar
  72. Hashimoto R, Fujitani N, Takegawa Y, Kurogochi M, Matsushita T, Naruchi K, Ohyabu N, Hinou H, Gao XD, Manri N, Satake H, Kaneko A, Sakamoto T, Nishimura SI (2011) An efficient approach for the characterization of mucin-type glycopeptides: the effect of O-glycosylation on the conformation of synthetic mucin peptides. Chem Eur J 17(8):2393–2404Google Scholar
  73. Heightman TD (2011) Chemical biology of lysine demethylases. Curr Chem Genomics 5(Suppl 1):62–71Google Scholar
  74. Hejjaoui M, Butterfield S, Fauvet B, Vercruysse F, Cui J, Dikiy I, Prudent M, Olschewski D, Zhang Y, Eliezer D, Lashuel HA (2012) Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: alpha-synuclein phosphorylation at tyrosine 125. J Am Chem Soc 134(11):5196–5210Google Scholar
  75. Himmel S, Wolff S, Becker S, Lee D, Griesinger C (2010) Detection and identification of protein-phosphorylation sites in histidines through HNP correlation patterns. Angew Chem Int Ed Engl 49(47):8971–8974Google Scholar
  76. Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21(2):140–146Google Scholar
  77. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049Google Scholar
  78. James TL (1985) Phosphorus-31 NMR as a probe for phosphoproteins. CRC Crit Rev Biochem 18(1):1–30Google Scholar
  79. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080Google Scholar
  80. Johnson LN, Lewis RJ (2001) Structural basis for control by phosphorylation. Chem Rev 101(8):2209–2242Google Scholar
  81. Jones BE, Rajagopal P, Klevit RE (1997) Phosphorylation on histidine is accompanied by localized structural changes in the phosphocarrier protein. HPr from Bacillus subtilis. Protein Sci 6(10):2107–2119Google Scholar
  82. Julien SG, Dube N, Hardy S, Tremblay ML (2011) Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 11(1):35–49Google Scholar
  83. Kar S, Sakaguchi K, Shimohigashi Y, Samaddar S, Banerjee R, Basu G, Swaminathan V, Kundu TK, Roy S (2002) Effect of phosphorylation on the structure and fold of transactivation domain of p53. J Biol Chem 277(18):15579–15585Google Scholar
  84. Kee JM, Muir TW (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 7(1):44–51Google Scholar
  85. Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28(10):1069–1078Google Scholar
  86. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:90Google Scholar
  87. Kolch W, Pitt A (2010) Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 10(9):618–629Google Scholar
  88. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705Google Scholar
  89. Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622Google Scholar
  90. Lakowski TM, t Hart P, Ahern CA, Martin NI, Frankel A (2010) Neta-substituted arginyl peptide inhibitors of protein arginine N-methyltransferases. ACS Chem Biol 5(11):1053–1063Google Scholar
  91. Landrieu I, Odaert B, Wieruszeski JM, Drobecq H, Rousselot-Pailley P, Inze D, Lippens G (2001) p13(SUC1) and the WW domain of PIN1 bind to the same phosphothreonine-proline epitope. J Biol Chem 276(2):1434–1438Google Scholar
  92. Landrieu I, Lacosse L, Leroy A, Wieruszeski JM, Trivelli X, Sillen A, Sibille N, Schwalbe H, Saxena K, Langer T, Lippens G (2006) NMR analysis of a Tau phosphorylation pattern. J Am Chem Soc 128(11):3575–3583Google Scholar
  93. Landrieu I, Smet-Nocca C, Amniai L, Louis JV, Wieruszeski JM, Goris J, Janssens V, Lippens G (2011) Molecular implication of PP2A and Pin1 in the Alzheimer’s disease specific hyperphosphorylation of Tau. PLoS ONE 6(6):e21521ADSGoogle Scholar
  94. Larkin A, Imperiali B (2011) The expanding horizons of asparagine-linked glycosylation. Biochemistry 50(21):4411–4426Google Scholar
  95. Latham JA, Dent SY (2007) Cross-regulation of histone modifications. Nat Struct Mol Biol 14(11):1017–1024Google Scholar
  96. Leemhuis H, Packman LC, Nightingale KP, Hollfelder F (2008) The human histone acetyltransferase P/CAF is a promiscuous histone propionyltransferase. Chem Bio Chem 9(4):499–503Google Scholar
  97. Lehnertz B, Rogalski JC, Schulze FM, Yi L, Lin S, Kast J, Rossi FM (2011) p53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice. Mol Cell 43(4):673–680Google Scholar
  98. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134Google Scholar
  99. Leroy A, Landrieu I, Huvent I, Legrand D, Codeville B, Wieruszeski JM, Lippens G (2010) Spectroscopic studies of GSK3{beta} phosphorylation of the neuronal Tau protein and its interaction with the N-terminal domain of apolipoprotein E. J Biol Chem 285(43):33435–33444Google Scholar
  100. Liang FC, Chen RP, Lin CC, Huang KT, Chan SI (2006) Tuning the conformation properties of a peptide by glycosylation and phosphorylation. Biochem Biophys Res Commun 342(2):482–488Google Scholar
  101. Liepinsh E, Otting G (1996) Proton exchange rates from amino acid side chains—implications for image contrast. Magn Reson Med 35(1):30–42Google Scholar
  102. Lin H, Su X, He B (2012) Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem Biol 7(6):947–960Google Scholar
  103. Liokatis S, Dose A, Schwarzer D, Selenko P (2010) Simultaneous detection of protein phosphorylation and acetylation by high-resolution NMR spectroscopy. J Am Chem Soc 132(42):14704–14705Google Scholar
  104. Liokatis S, Stuetzter A, Elsaesser S, Theillet FX, Klingberg R, van Rossum B, Schwarzer D, Allis CD, Fischle W, Selenko P (2012) Phosphorylation of histone H3 Serine 10 establishes a hierarchy for subsequent intramolecular modification events. Nat Struct Mol Biol 19(8):819–823Google Scholar
  105. Liou YC, Zhou XZ, Lu KP (2011) Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 36(10):501–514Google Scholar
  106. Lippens G, Landrieu I, Hanoulle X (2008) Studying posttranslational modifications by in-cell NMR. Chem Biol 15(4):311–312Google Scholar
  107. Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K (2009) Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J Biol Chem 284(47):32288–32295Google Scholar
  108. Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD (2011) The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci Signal 4(202):83Google Scholar
  109. Lu KP, Liou YC, Zhou XZ (2002) Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 12(4):164–172Google Scholar
  110. Luo M (2012) Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 443–463Google Scholar
  111. Macdonald JM, LeBlanc DA, Haas AL, London RE (1999) An NMR analysis of the reaction of ubiquitin with [acetyl-1-13C] aspirin. Biochem Pharmacol 57(11):1233–1244Google Scholar
  112. Macnaughtan MA, Kane AM, Prestegard JH (2005) Mass spectrometry assisted assignment of NMR resonances in reductively 13C-methylated proteins. J Am Chem Soc 127(50):17626–17627Google Scholar
  113. Mahajan A, Yuan C, Lee H, Chen ES, Wu PY, Tsai MD (2008) Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 1(51):re12Google Scholar
  114. Mak A, Smillie LB, Barany M (1978) Specific phosphorylation at serine-283 of alpha tropomyosin from frog skeletal and rabbit skeletal and cardiac muscle. Proc Natl Acad Sci USA 75(8):3588–3592ADSGoogle Scholar
  115. Marth JD, Grewal PK (2008) Mammalian glycosylation in immunity. Nat Rev Immunol 8(11):874–887Google Scholar
  116. Martin L, Latypova X, Terro F (2011) Post-translational modifications of Tau protein: implications for Alzheimer’s disease. Neurochem Int 58(4):458–471Google Scholar
  117. Matheis G, Whitaker JR (1984) 31P NMR chemical shifts of phosphate covalently bound to proteins. Int J Biochem 16(8):867–873Google Scholar
  118. Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP (2003) The Tudor domain ‘royal family’: Tudor, plant agenet, chromo, PWWP and MBT domains. Trends Biochem Sci 28(2):69–74Google Scholar
  119. Metzler WJ, Bajorath J, Fenderson W, Shaw SY, Constantine KL, Naemura J, Leytze G, Peach RJ, Lavoie TB, Mueller L, Linsley PS (1997) Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat Struct Biol 4(7):527–531Google Scholar
  120. Meyer B, Moller H (2007) Conformation of glycopeptides and glycoproteins. Top Curr Chem 267:187–251Google Scholar
  121. Mittag T, Orlicky S, Choy WY, Tang X, Lin H, Sicheri F, Kay LE, Tyers M, Forman-Kay JD (2008) Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc Natl Acad Sci USA 105(46):17772–17777ADSGoogle Scholar
  122. Narimatsu Y, Kubota T, Furukawa S, Morii H, Narimatsu H, Yamasaki K (2010) Effect of glycosylation on Cis/trans isomerization of prolines in IgA1-hinge peptide. J Am Chem Soc 132(16):5548–5549Google Scholar
  123. Nielsen G, Schwalbe H (2011) NMR spectroscopic investigations of the activated p38alpha mitogen-activated protein kinase. Chem Bio Chem 12(17):2599–2607Google Scholar
  124. Norris KL, Lee J-Y, Yao T-P (2009) Acetylation goes global: the emergence of acetylation biology. Sci Signal 2(97):pe76Google Scholar
  125. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867Google Scholar
  126. Owens NW, Braun C, O’Neil JD, Marat K, Schweizer F (2007) Effects of glycosylation of (2S,4R)-4-hydroxyproline on the conformation, kinetics, and thermodynamics of prolyl amide isomerization. J Am Chem Soc 129(38):11670–11671Google Scholar
  127. Owens NW, Lee A, Marat K, Schweizer F (2009) The implications of (2S,4S)-hydroxyproline 4-O-glycosylation for prolyl amide isomerization. Chem Eur J 15(40):10649–10657Google Scholar
  128. Owens NW, Stetefeld J, Lattova E, Schweizer F (2010) Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices. J Am Chem Soc 132(14):5036–5042Google Scholar
  129. Parry RV, Ward SG (2010) Protein arginine methylation: a new handle on T lymphocytes? Trends Immunol 31(4):164–169Google Scholar
  130. Patchell VB, Vorotnikov AV, Gao Y, Low DG, Evans JS, Fattoum A, El-Mezgueldi M, Marston SB, Levine BA (2002) Phosphorylation of the minimal inhibitory region at the C-terminus of caldesmon alters its structural and actin binding properties. Biochim Biophys Acta 1596(1):121–130Google Scholar
  131. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10(12):M111.012658Google Scholar
  132. Perez Y, Gairi M, Pons M, Bernado P (2009) Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 391(1):136–148Google Scholar
  133. Peter CJ, Akbarian S (2011) Balancing histone methylation activities in psychiatric disorders. Trends Mol Med 17(7):372–379Google Scholar
  134. Pethe K, Bifani P, Drobecq H, Sergheraert C, Debrie AS, Locht C, Menozzi FD (2002) Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis. Proc Natl Acad Sci USA 99(16):10759–10764ADSGoogle Scholar
  135. Prabakaran S, Everley RA, Landrieu I, Wieruszeski JM, Lippens G, Steen H, Gunawardena J (2011) Comparative analysis of Erk phosphorylation suggests a mixed strategy for measuring phospho-form distributions. Mol Syst Biol 7:482Google Scholar
  136. Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92(5):1439–1456Google Scholar
  137. Rajagopal P, Waygood EB, Klevit RE (1994) Structural consequences of histidine phosphorylation: NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli. Biochemistry 33(51):15271–15282Google Scholar
  138. Ramelot TA, Nicholson LK (2001) Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J Mol Biol 307(3):871–884Google Scholar
  139. Rich JR, Withers SG (2009) Emerging methods for the production of homogeneous human glycoproteins. Nat Chem Biol 5(4):206–215Google Scholar
  140. Riester D, Wegener D, Hildmann C, Schwienhorst A (2004) Members of the histone deacetylase superfamily differ in substrate specificity towards small synthetic substrates. Biochem Biophys Res Commun 324(3):1116–1123Google Scholar
  141. Roth J (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 102(2):285–303Google Scholar
  142. Sakai T, Tochio H, Tenno T, Ito Y, Kokubo T, Hiroaki H, Shirakawa M (2006) In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J Biomol NMR 36(3):179–188Google Scholar
  143. Salah Z, Alian A, Aqeilan RI (2012) WW domain-containing proteins: retrospectives and the future. Front Biosci 17:331–348Google Scholar
  144. Sanchez R, Zhou MM (2009) The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel 12(5):659–665Google Scholar
  145. Sanchez R, Zhou MM (2011) The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36(7):364–372Google Scholar
  146. Schutkowski M, Bernhardt A, Zhou XZ, Shen M, Reimer U, Rahfeld JU, Lu KP, Fischer G (1998) Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 37(16):5566–5575Google Scholar
  147. Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21(5):576–582Google Scholar
  148. Seet BT, Dikic I, Zhou MM, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7(7):473–483Google Scholar
  149. Selenko P, Frueh DP, Elsaesser SJ, Haas W, Gygi SP, Wagner G (2008) In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat Struct Mol Biol 15(3):321–329Google Scholar
  150. Sibille N, Huvent I, Fauquant C, Verdegem D, Amniai L, Leroy A, Wieruszeski JM, Lippens G, Landrieu I (2011) Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein. Proteins 80:454–462Google Scholar
  151. Simanek EE, Huang DH, Pasternack L, Machajewski TD, Seitz O, Millar DS, Dyson HJ, Wong CH (1998) Glycosylation of threonine of the repeating unit of RNA polymerase II with beta-linked N-acetylglucosame leads to a turnlike structure. J Am Chem Soc 120(45):11567–11575Google Scholar
  152. Skrisovska L, Schubert M, Allain FHT (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46(1):51–65Google Scholar
  153. Slawson C, Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 11(9):678–684Google Scholar
  154. Slawson C, Copeland RJ, Hart GW (2010) O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci 35(10):547–555Google Scholar
  155. Slynko V, Schubert M, Numao S, Kowarik M, Aebi M, Allain FHT (2009) NMR structure determination of a segmentally labeled glycoprotein using in vitro glycosylation. J Am Chem Soc 131(3):1274–1281Google Scholar
  156. Smet-Nocca C, Wieruszeski JM, Melnyk O, Benecke A (2010) NMR-based detection of acetylation sites in peptides. J Pept Sci 16(8):414–423Google Scholar
  157. Smet-Nocca C, Broncel M, Wieruszeski JM, Tokarski C, Hanoulle X, Leroy A, Landrieu I, Rolando C, Lippens G, Hackenberger CP (2011) Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol BioSyst 7(5):1420–1429Google Scholar
  158. Smith BC, Denu JM (2007a) Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J Biol Chem 282(51):37256–37265Google Scholar
  159. Smith BC, Denu JM (2007b) Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NAD+ cleavage. J Am Chem Soc 129(18):5802–5803Google Scholar
  160. Smith BC, Denu JM (2009) Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 1789(1):45–57Google Scholar
  161. Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR, Bartleson C, Graves DJ, DeMaggio AJ, Hoekstra MF, Blenis J, Hunter T, Cantley LC (1996) A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16(11):6486–6493Google Scholar
  162. Spannhoff A, Hauser AT, Heinke R, Sippl W, Jung M (2009) The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. Chem Med Chem 4(10):1568–1582Google Scholar
  163. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56RMathSciNetGoogle Scholar
  164. Stanley P, Schachter H, Taniguchi N (2009) N-Glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  165. Stark GR, Wang Y, Lu T (2011) Lysine methylation of promoter-bound transcription factors and relevance to cancer. Cell Res 21(3):375–380Google Scholar
  166. Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499Google Scholar
  167. Suh JY, Cai M, Clore GM (2008) Impact of phosphorylation on structure and thermodynamics of the interaction between the N-terminal domain of enzyme I and the histidine phosphocarrier protein of the bacterial phosphotransferase system. J Biol Chem 283(27):18980–18989Google Scholar
  168. Tagashira M, Iijima H, Toma K (2002) An NMR study of O-glycosylation induced structural changes in the alpha-helix of calcitonin. Glycoconj J 19(1):43–52Google Scholar
  169. Tait S, Dutta K, Cowburn D, Warwicker J, Doig AJ, McCarthy JE (2010) Local control of a disorder-order transition in 4E-BP1 underpins regulation of translation via eIF4E. Proc Natl Acad Sci USA 107(41):17627–17632Google Scholar
  170. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028Google Scholar
  171. Teperino R, Schoonjans K, Auwerx J (2010) Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 12(4):321–327Google Scholar
  172. Teyssier C, Le Romancer M, Sentis S, Jalaguier S, Corbo L, Cavailles V (2010) Protein arginine methylation in estrogen signaling and estrogen-related cancers. Trends Endocrinol Metab 21(3):181–189Google Scholar
  173. Theillet FX, Liokatis S, Jost JO, Bekei B, Rose HM, Binolfi A, Schwarzer D, Selenko P (2012) Site-specific mapping and time-resolved monitoring of lysine methylation by high-resolution NMR spectroscopy. J Am Chem Soc 134(18):7616–7619Google Scholar
  174. van Nuland NA, Boelens R, Scheek RM, Robillard GT (1995) High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. J Mol Biol 246(1):180–193Google Scholar
  175. Varier RA, Timmers HT (2011) Histone lysine methylation and demethylation pathways in cancer. BBA-Rev Cancer 1815(1):75–89Google Scholar
  176. Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360Google Scholar
  177. Vigerust DJ, Shepherd VL (2007) Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15(5):211–218Google Scholar
  178. Vollmuth F, Geyer M (2011) Interaction of propionylated and butyrylated histone H3 lysine marks with Brd4 bromodomains. Angew Chem Int Ed Engl 49(38):6768–6772Google Scholar
  179. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44(45):7342–7372Google Scholar
  180. Wang Z, Udeshi ND, O’Malley M, Shabanowitz J, Hunt DF, Hart GW (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9(1):153–160Google Scholar
  181. Weiwad M, Kullertz G, Schutkowski M, Fischer G (2000) Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett 478(1–2):39–42Google Scholar
  182. Werner-Allen JW, Lee CJ, Liu P, Nicely NI, Wang S, Greenleaf AL, Zhou P (2011) cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J Biol Chem 286(7):5717–5726Google Scholar
  183. Wintjens R, Wieruszeski JM, Drobecq H, Rousselot-Pailley P, Buee L, Lippens G, Landrieu I (2001) 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides. J Biol Chem 276(27):25150–25156Google Scholar
  184. Wolf SS (2009) The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 66(13):2109–2121Google Scholar
  185. Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102(2):371–386Google Scholar
  186. Wu WG, Pasternack L, Huang DH, Koeller KM, Lin CC, Seitz O, Wong CH (1999) Structural study on O-glycopeptides: glycosylation-induced conformational changes of O-GlcNAc, O-LacNAc, O-sialyl-LacNAc, and O-sialyl-lewis-X peptides of the mucin domain of MAdCAM-1. J Am Chem Soc 121(11):2409–2417Google Scholar
  187. Wurzenberger C, Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12(8):469–482Google Scholar
  188. Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ, Arulanandam AR, Smolyar A, Reinherz EL, Wagner G (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269(5228):1273–1278ADSGoogle Scholar
  189. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 6(5):1917–1932Google Scholar
  190. Xu AS, Macdonald JM, Labotka RJ, London RE (1999) NMR study of the sites of human hemoglobin acetylated by aspirin. Biochim Biophys Acta 1432(2):333–349Google Scholar
  191. Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3(3):177–186Google Scholar
  192. Yamaguchi Y, Kato K (2010) Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy. Method Enzymol 478:305–322Google Scholar
  193. Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318Google Scholar
  194. Yap KL, Zhou MM (2011) Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry 50(12):1966–1980Google Scholar
  195. Yu CH, Si T, Wu WH, Hu J, Du JT, Zhao YF, Li YM (2008) O-GlcNAcylation modulates the self-aggregation ability of the fourth microtubule-binding repeat of Tau. Biochem Biophys Res Commun 375(1):59–62Google Scholar
  196. Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes Tau against aggregation. Nat Chem Biol 8(4):393–399Google Scholar
  197. Zhang K, Chen Y, Zhang Z, Zhao Y (2009) Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J Proteome Res 8(2):900–906MathSciNetGoogle Scholar
  198. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7(1):58–63Google Scholar
  199. Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, Kullertz G, Stark M, Fischer G, Lu KP (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and Tau proteins. Mol Cell 6(4):873–883Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Francois-Xavier Theillet
    • 1
  • Caroline Smet-Nocca
    • 2
  • Stamatios Liokatis
    • 1
  • Rossukon Thongwichian
    • 1
  • Jonas Kosten
    • 1
  • Mi-Kyung Yoon
    • 3
  • Richard W. Kriwacki
    • 3
  • Isabelle Landrieu
    • 2
  • Guy Lippens
    • 2
  • Philipp Selenko
    • 1
    Email author
  1. 1.Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin)In-cell NMR GroupBerlinGermany
  2. 2.CNRS UMR 8576Universite Lille Nord de FranceVilleneuve d’AscqFrance
  3. 3.Department of Structural BiologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations