Journal of Biomolecular NMR

, Volume 54, Issue 3, pp 291–305 | Cite as

Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

  • Donghua H. Zhou
  • Andrew J. Nieuwkoop
  • Deborah A. Berthold
  • Gemma Comellas
  • Lindsay J. Sperling
  • Ming Tang
  • Gautam J. Shah
  • Elliott J. Brea
  • Luisel R. Lemkau
  • Chad M. Rienstra
Article

Abstract

Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.

Keywords

Chemical assignment Solid-state NMR Proton detection Magic-angle spinning 

Supplementary material

10858_2012_9672_MOESM1_ESM.pdf (3.3 mb)
Supplementary material 1 (PDF 3387 kb)

References

  1. Akbey U, Lange S, Franks TW, Linser R, Rehbein K, Diehl A, van Rossum B-J, Reif B, Oschkinat H (2010) Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J Biomol NMR 46:67–73CrossRefGoogle Scholar
  2. Bennett AE, OK JH, Griffin RG, Vega S (1992) Chemical shift correlation spectroscopy in rotating solids: radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624–8627ADSCrossRefGoogle Scholar
  3. Bertini I, Bhaumik A, De Paepe G, Griffin RG, Lelli M, Lewandowski JR, Luchinat C (2010) High-resolution solid-state NMR structure of a 17.6 kDa protein. J Am Chem Soc 132:1032–1040CrossRefGoogle Scholar
  4. Blois TM, Bowie JU (2009) G-protein-coupled receptor structures were not built in a day. Prot Sci 18:1335–1342CrossRefGoogle Scholar
  5. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692ADSCrossRefGoogle Scholar
  6. Castellani F, Rossum BV, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102ADSCrossRefGoogle Scholar
  7. Chevelkov V, van Rossum BJ, Castellani F, Rehbein K, Diehl A, Hohwy M, Steuernagel S, Engelke F, Oschkinat H, Reif B (2003) 1H detection in MAS solid-state NMR spectroscopy of biomacromolecules employing pulsed field gradients for residual solvent suppression. J Am Chem Soc 125:7788–7789CrossRefGoogle Scholar
  8. Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultra-high resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:3878–3881CrossRefGoogle Scholar
  9. Comellas G, Lemkau LR, Nieuwkoop AJ, Kloepper KD, Ladror DT, Ebisu R, Woods WS, Lipton AS, George JM, Rienstra CM (2011) Structured regions of α-synuclein fibrils include the early-onset parkinson’s disease mutation sites. J Mol Biol 411:881–895CrossRefGoogle Scholar
  10. Couprie J, Remerowski ML, Bailleul A, Courcon M, Gilles N, Quemeneur E, Jamin N (1998) Differences between the electronic environments of reduced and oxidized Escherichia coli DsbA inferred from heteronuclear magnetic resonance spectroscopy. Protein Sci 7:2065–2080CrossRefGoogle Scholar
  11. Detken A, Hardy EH, Ernst M, Kainosho M, Kawakami T, Aimoto S, Meier BH (2001) Methods for sequential resonance assignment in solid, uniformly 13C, 15 N labelled peptides: quantification and application to antamanide. J Biomol NMR 20:203–221CrossRefGoogle Scholar
  12. Ernst M, Meier MA, Tuherm T, Samoson A, Meier BH (2004) Low-power high-resolution solid-state NMR of peptides and proteins. J Am Chem Soc 126:4764–4765CrossRefGoogle Scholar
  13. Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR (2006) General structural motifs of amyloid protofilaments. Proc Natl Acad Sci USA 103:16248–16253ADSCrossRefGoogle Scholar
  14. Filmore D (2004) It’s a GPCR world: cell-based screening assays and structural studies are fueling G-protein coupled receptors as one of the most popular classes of investigational drug targets. Mod Drug Discov 7:24–28Google Scholar
  15. Fossi M, Castellani F, Nilges M, Oschkinat H, van Rossum B-J (2005) SOLARIA: a protocol for automated cross-peak assignment and structure calculation for solid-state magic-angle spinning NMR spectroscopy. Angew Chem Int Ed 44:6151–6154CrossRefGoogle Scholar
  16. Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the β1 immunoglobin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305CrossRefGoogle Scholar
  17. Franks WT, Wylie BJ, Frericks Schmidt HL, Nieuwkoop AJ, Mayrhofer RM, Shah GJ, Graesser DT, Rienstra CM (2008) Dipole tensor-based refinement for atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR spectroscopy. Proc Natl Acad Sci USA 105:4621–4626ADSCrossRefGoogle Scholar
  18. Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT, Clore GM (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253:657–661Google Scholar
  19. Grzesiek S, Bax A (1992a) An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson 99:201–207Google Scholar
  20. Grzesiek S, Bax A (1992b) Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114:6291–6293CrossRefGoogle Scholar
  21. Grzesiek S, Bax A (1992c) Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson 96:432–440Google Scholar
  22. Habenstein B, Wasmer C, Bousset L, Sourigues Y, Schütz A, Loquet A, Meier B, Melki R, Böckmann A (2011) Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion. J Biomol NMR 51:235–243CrossRefGoogle Scholar
  23. Hansen PE (2000) Isotope effects on chemical shifts of proteins and peptides. Magn Reson Chem 38:1–10CrossRefGoogle Scholar
  24. Hediger S, Meier BH, Kurur ND, Bodenhausen G, Ernst RR (1994) NMR cross polarization by adiabatic passage through the Hartmann–Hahn condition (APHH). Chem Phys Lett 223:283–288ADSCrossRefGoogle Scholar
  25. Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci USA 102:15871–15876ADSCrossRefGoogle Scholar
  26. Hong M (2007) Structure, topology, and dynamics of membrane peptides and proteins from solid-state NMR spectroscopy. J Phys Chem B 111:10340–10351CrossRefGoogle Scholar
  27. Huber M, Hiller S, Schanda P, Ernst M, Böckmann A, Verel R, Meier BH (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12:915–918CrossRefGoogle Scholar
  28. Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of 1H, 13C, and 15 N spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29:4659–4667CrossRefGoogle Scholar
  29. Inaba K, Ito K (2008) Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine. Biochim Biophys Acta 1783:520–529CrossRefGoogle Scholar
  30. Ishii Y, Yesinowski JP, Tycko R (2001) Sensitivity enhancement in solid-state 13C NMR of synthetic polymers and biopolymers by 1H NMR detection with high-speed magic angle spinning. J Am Chem Soc 123:2921–2922CrossRefGoogle Scholar
  31. Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D structure of amyloid protofilaments of beta2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci USA 103:18119–18124ADSCrossRefGoogle Scholar
  32. Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101:711–716ADSCrossRefGoogle Scholar
  33. Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kuhne R, Stout JR, Higman VA, Klevit RE, van Rossum B-J, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of aB-crystallin oligomers. Nat Struct Mol Biol 17:1037–1042CrossRefGoogle Scholar
  34. Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514Google Scholar
  35. Kloepper KD, Woods WS, Winter KA, George JM, Rienstra CM (2006) Preparation of a-synuclein fibrils for solid-state NMR: expression, purification, and incubation of wild-type and mutant forms. Protein Express Purif 48:112–117CrossRefGoogle Scholar
  36. Kloepper K, Zhou D, Li Y, Winter K, George J, Rienstra C (2007) Temperature-dependent sensitivity enhancement of solid-state NMR spectra of α-synuclein fibrils. J Biomol NMR 39:197–211CrossRefGoogle Scholar
  37. Knight MJ, Webber AL, Pell AJ, Guerry P, Barbet-Massin E, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Emsley L, Lesage A, Herrmann T, Pintacuda G (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Angew Chem Int Ed 50:11697–11701CrossRefGoogle Scholar
  38. Lange A, Becker S, Seidel K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed 44:2089–2092CrossRefGoogle Scholar
  39. Lewandowski JzR, Dumez J-N, Akbey Um, Lange S, Emsley L, Oschkinat H (2011) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211CrossRefGoogle Scholar
  40. Li Y, Berthold DA, Frericks HL, Gennis RB, Rienstra CM (2007) Partial 13C and 15 N chemical-shift assignments of the disulfide-bond-forming enzyme DsbB by 3D magic-angle spinning NMR spectroscopy. ChemBioChem 8:434–442MATHCrossRefGoogle Scholar
  41. Li Y, Berthold DA, Gennis RB, Rienstra CM (2008) Chemical shift assignment of the transmembrane helices of DsbB, a 20-kDa integral membrane enzyme, by 3D magic-angle spinning NMR spectroscopy. Prot Sci 17:199–204CrossRefGoogle Scholar
  42. Linser R (2012) Backbone assignment of perdeuterated proteins using long-range H/C-dipolar transfers. J. Biolmol. NMR 52:151–158CrossRefGoogle Scholar
  43. Linser R, Fink U, Reif B (2008) Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J Magn Reson 193:89–93ADSCrossRefGoogle Scholar
  44. Linser R, Fink U, Reif B (2010a) Assignment of dynamic regions in biological solids enabled by spin-state selective NMR experiments. J Am Chem Soc 132:8891–8893CrossRefGoogle Scholar
  45. Linser R, Fink U, Reif B (2010b) Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state. J Biomol NMR 47:1–6CrossRefGoogle Scholar
  46. Linser R, Bardiaux B, Higman V, Fink U, Reif B (2011a) Structure calculation from unambiguous long-range amide and methyl 1H–1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J Am Chem Soc 133:5905–5912CrossRefGoogle Scholar
  47. Linser R, Dasari M, Hiller M, Higman V, Fink U, LopezdelAmo J-M, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B (2011b) Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Ed 50:4508–4512CrossRefGoogle Scholar
  48. Loquet A, Bardiaux B, Gardiennet C, Blanchet C, Baldus M, Nilges M, Malliavin T, Bockmann A (2008) 3D Structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. J Am Chem Soc 130:3579–3589CrossRefGoogle Scholar
  49. Mani R, Tang M, Wu X, Buffy JJ, Waring AJ, Sherman MA, Hong M (2006) Membrane-bound dimer structure of a beta-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry 45:8341–8349CrossRefGoogle Scholar
  50. Manolikas T, Herrmann T, Meier BH (2008) Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. J Am Chem Soc 130:3959–3966CrossRefGoogle Scholar
  51. Nielsen JT, Bjerring M, Jeppesen MD, Pedersen RO, Pedersen JM, Hein KL, Vosegaard T, Skrydstrup T, Otzen DE, Nielsen NC (2009) Unique identification of supramolecular structures in amyloid fibrils by solid-state NMR spectroscopy. Angew Chem Int Ed 48:2118–2121CrossRefGoogle Scholar
  52. Nietlispach D (2004) A selective intra-HN(CA)CO experiment for the backbone assignment of deuterated proteins. J Biomol NMR 28:131–136CrossRefGoogle Scholar
  53. Nietlispach D, Ito Y, Laue ED (2002) A novel approach for the sequential backbone assignment of larger proteins: selective intra-HNCA and DQ-HNCA. J Am Chem Soc 124:11199–11207CrossRefGoogle Scholar
  54. Nieuwkoop AJ, Rienstra CM (2010) Supramolecular protein structure determination by site-specific long-range intermolecular solid state NMR spectroscopy. J Am Chem Soc 132:7570–7571CrossRefGoogle Scholar
  55. Otzen DE (2003) Folding of DsbB in mixed micelles: a kinetic analysis of the stability of a bacterial membrane protein. J Mol Biol 330:641–649CrossRefGoogle Scholar
  56. Paulson EK, Morcombe CR, Gaponenko V, Dancheck B, Byrd RA, Zilm KW (2003) Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state. J Am Chem Soc 125:15831–15836CrossRefGoogle Scholar
  57. Permi P, Annila A (2004) Coherence transfer in proteins. Prog Nucl Magn Reson Spectrosc 44:97–137CrossRefGoogle Scholar
  58. Reif B, Jaroniec CP, Rienstra CM, Hohwy M, Griffin RG (2001) H-1-H-1 MAS correlation spectroscopy and distance measurements in a deuterated peptide. J Magn Reson 151:320–327ADSCrossRefGoogle Scholar
  59. Schuetz A, Wasmer C, Habenstein B, Verel R, Greenwald J, Riek R, Böckmann A, Meier BH (2010) Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s(1–227). ChemBioChem 11:1543–1551CrossRefGoogle Scholar
  60. Shi L, Lake EMR, Ahmed MAM, Brown LS, Ladizhansky V (2009) Solid-state NMR study of proteorhodopsin in the lipid environment: secondary structure and dynamics. Biochim Biophys Acta 1788:2563–2574CrossRefGoogle Scholar
  61. Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM (2010) Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide bond forming enzyme DsbA. J Mol Biol 399:268–282CrossRefGoogle Scholar
  62. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) alpha-Synuclein in Lewy bodies. Nature 388:839–840ADSCrossRefGoogle Scholar
  63. Tang M, Berthold DA, Rienstra CM (2011a) Solid-state NMR of a large membrane protein by paramagnetic relaxation enhancement. J Phys Chem Lett 2:1836–1841CrossRefGoogle Scholar
  64. Tang M, Sperling L, Berthold D, Schwieters C, Nesbitt A, Nieuwkoop A, Gennis R, Rienstra C (2011b) High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR 51:227–233CrossRefGoogle Scholar
  65. Tang M, Sperling LJ, Berthold DA, Nesbitt AE, Gennis RB, Rienstra CM (2011c) Solid-state NMR study of the charge-transfer complex between ubiquinone-8 and disulfide bond generating membrane protein DsbB. J Am Chem Soc 133:4359–4366CrossRefGoogle Scholar
  66. Tossavainen H, Permi P (2004) Optimized pathway selection in intraresidual triple-resonance experiments. J Magn Reson 170:244–251ADSCrossRefGoogle Scholar
  67. Verel R, Baldus M, Ernst M, Meier BH (1998) A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques. Chem Phys Lett 287:421–428ADSCrossRefGoogle Scholar
  68. Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V (2011) Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc 133:17434–17443CrossRefGoogle Scholar
  69. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526Google Scholar
  70. Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J. Magn. Reson. B 101:201–205CrossRefGoogle Scholar
  71. Zhou DH, Rienstra CM (2008a) High-performance solvent suppression for proton-detected solid-state NMR. J Magn Reson 192:167–172ADSCrossRefGoogle Scholar
  72. Zhou DH, Rienstra CM (2008b) Rapid analysis of organic compounds by proton-detected heteronuclear correlation NMR spectroscopy at 40 kHz magic-angle spinning. Angew Chem Int Ed 47:7328–7331CrossRefGoogle Scholar
  73. Zhou D, Kloepper K, Winter K, Rienstra C (2006a) Band-selective 13C homonuclear 3D spectroscopy for solid proteins at high field with rotor-synchronized soft pulses. J Biomol NMR 34:245–257CrossRefGoogle Scholar
  74. Zhou DH, Graesser DT, Franks WT, Rienstra CM (2006b) Sensitivity and resolution in proton solid-state NMR at intermediate deuteration levels: quantitative linewidth characterization and applications to correlation spectroscopy. J Magn Reson 178:297–307ADSCrossRefGoogle Scholar
  75. Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM (2007a) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801CrossRefGoogle Scholar
  76. Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007b) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 46:8380–8383CrossRefGoogle Scholar
  77. Zhou Y, Cierpicki T, Jimenez RHF, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31:896–908CrossRefGoogle Scholar
  78. Zhou DH, Shah G, Mullen C, Sandoz D, Rienstra CM (2009) Proton-detected solid-state NMR of natural abundance peptide and protein pharmaceuticals. Angew Chem Int Ed 48:1253–1256CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Donghua H. Zhou
    • 1
  • Andrew J. Nieuwkoop
    • 2
    • 3
  • Deborah A. Berthold
    • 2
  • Gemma Comellas
    • 4
  • Lindsay J. Sperling
    • 2
    • 5
  • Ming Tang
    • 2
  • Gautam J. Shah
    • 2
  • Elliott J. Brea
    • 2
  • Luisel R. Lemkau
    • 2
  • Chad M. Rienstra
    • 2
    • 4
  1. 1.Department of PhysicsOklahoma State UniversityStillwaterUSA
  2. 2.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Leibniz-Institut für Molekulare PharmakologieBerlinGermany
  4. 4.Center for Biophysics and Computational BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Materials Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations