Journal of Biomolecular NMR

, Volume 53, Issue 4, pp 281–292 | Cite as

Determination of structural fluctuations of proteins from structure-based calculations of residual dipolar couplings

  • Rinaldo W. Montalvao
  • Alfonso De Simone
  • Michele Vendruscolo


Residual dipolar couplings (RDCs) have the potential of providing detailed information about the conformational fluctuations of proteins. It is very challenging, however, to extract such information because of the complex relationship between RDCs and protein structures. A promising approach to decode this relationship involves structure-based calculations of the alignment tensors of protein conformations. By implementing this strategy to generate structural restraints in molecular dynamics simulations we show that it is possible to extract effectively the information provided by RDCs about the conformational fluctuations in the native states of proteins. The approach that we present can be used in a wide range of alignment media, including Pf1, charged bicelles and gels. The accuracy of the method is demonstrated by the analysis of the Q factors for RDCs not used as restraints in the calculations, which are significantly lower than those corresponding to existing high-resolution structures and structural ensembles, hence showing that we capture effectively the contributions to RDCs from conformational fluctuations.


Protein dynamics Protein conformational ensembles Molecular dynamics simulations 

Supplementary material

10858_2012_9644_MOESM1_ESM.pdf (2.6 mb)
Supplementary material 1 (PDF 2,705 kb)


  1. Allison JR, Varnai P, Dobson CM, Vendruscolo M (2009) Determination of the free energy landscape of alpha-synuclein using spin label nuclear magnetic resonance measurements. J Am Chem Soc 131:18314–18326CrossRefGoogle Scholar
  2. Almond A, Axelsen JB (2002) Physical interpretation of residual dipolar couplings in neutral aligned media. J Am Chem Soc 124:9986–9987CrossRefGoogle Scholar
  3. Azurmendi HF, Bush CA (2002) Tracking alignment from the moment of inertia tensor (tramite) of biomolecules in neutral dilute liquid crystal solutions. J Am Chem Soc 124:2426–2427CrossRefGoogle Scholar
  4. Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16CrossRefGoogle Scholar
  5. Berlin K, O’Leary DP, Fushman D (2009) Improvement and analysis of computational methods for prediction of residual dipolar couplings. J Magn Res 201:25–33ADSCrossRefGoogle Scholar
  6. Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci USA 102:1430–1435ADSCrossRefGoogle Scholar
  7. Best RB, Vendruscolo M (2004) Determination of protein structures consistent with NMR order parameters. J Am Chem Soc 126:8090–8091CrossRefGoogle Scholar
  8. Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Prog Nucl Magn Res 46:23–61CrossRefGoogle Scholar
  9. Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642ADSCrossRefGoogle Scholar
  10. Bouvignies G, Markwick P, Bruscheweiler R, Blackledge M (2006) Simultaneous determination of protein backbone structure and dynamics from residual dipolar couplings. J Am Chem Soc 128:15100–15101CrossRefGoogle Scholar
  11. Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109:4108–4139CrossRefGoogle Scholar
  12. Clore GM, Schwieters CD (2004a) Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements. Biochemistry 43:10678–10691CrossRefGoogle Scholar
  13. Clore GM, Schwieters CD (2004b) How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? J Am Chem Soc 126:2923–2938CrossRefGoogle Scholar
  14. Corazza A, Rosano C, Pagano K, Alverdi V, Esposito G, Capanni C, Bemporad F, Plakoutsi G, Stefani M, Chiti F, Zuccotti S, Bolognesi M, Viglino P (2006) Structure, conformational stability, and enzymatic properties of acylphosphatase from the hyperthermophile Sulfolobus solfataricus. Proteins 62:64–79CrossRefGoogle Scholar
  15. Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120:6836–6837CrossRefGoogle Scholar
  16. De Simone A, Richter B, Salvatella X, Vendruscolo M (2009) Toward an accurate determination of free energy landscapes in solution states of proteins. J Am Chem Soc 131:3810–3811CrossRefGoogle Scholar
  17. Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127:476–477CrossRefGoogle Scholar
  18. Fenwick RB, Esteban-Martin S, Richter B, Lee D, Walter KFA, Milovanovic D, Becker S, Lakomek NA, Griesinger C, Salvatella X (2011) Weak long-range correlated motions in a surface patch of ubiquitin involved in molecular recognition. J Am Chem Soc 133:10336–10339CrossRefGoogle Scholar
  19. Fernandes MX, Bernado P, Pons M, de la Torre JG (2001) An analytical solution to the problem of the orientation of rigid particles by planar obstacles. Application to membrane systems and to the calculation of dipolar couplings in protein NMR spectroscopy. J Am Chem Soc 123:12037–12047CrossRefGoogle Scholar
  20. Ferrarini A (2003) Modeling of macromolecular alignment in nematic virus suspensions. Application to the prediction of NMR residual dipolar couplings. J Phys Chem B 107:7923–7931CrossRefGoogle Scholar
  21. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603ADSCrossRefGoogle Scholar
  22. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  23. Hildebrandt A, Dehof AK, Rurainski A, Bertsch A, Schumann M, Toussaint NC, Moll A, Stockel D, Nickels S, Mueller SC, Lenhof HP, Kohlbacher O (2010) BALL—biochemical algorithms library 1.3. BMC Bioinform 11:531CrossRefGoogle Scholar
  24. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65:712–725CrossRefGoogle Scholar
  25. Huang JR, Grzesiek S (2010) Ensemble calculations of unstructured proteins constrained by RDC and PRE data: a case study of urea-denatured ubiquitin. J Am Chem Soc 132:694–705CrossRefGoogle Scholar
  26. Iwahara J, Schwieters CD, Clore GM (2004) Ensemble approach for NMR structure refinement against H1 paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J Am Chem Soc 126:5879–5896CrossRefGoogle Scholar
  27. Iwahara J, Zweckstetter M, Clore GM (2006) NMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA. Proc Natl Acad Sci USA 103:15062–15067ADSCrossRefGoogle Scholar
  28. Kalodimos CG (2011) NMR reveals novel mechanisms of protein activity regulation. Protein Sci 20:773–782CrossRefGoogle Scholar
  29. Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KFA, Becker S, Meiler J, Grubmuller H, Griesinger C, de Groot BL (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475ADSCrossRefGoogle Scholar
  30. Lindorff-Larsen K, Best RB, DePristo MA, Dobson CM, Vendruscolo M (2005) Simultaneous determination of protein structure and dynamics. Nature 433:128–132ADSCrossRefGoogle Scholar
  31. Losonczi JA, Andrec M, Fischer MWF, Prestegard JH (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Res 138:334–342ADSCrossRefGoogle Scholar
  32. Louhivuori M, Otten R, Lindorff-Larsen K, Annila A (2006) Conformational fluctuations affect protein alignment in dilute liquid crystal media. J Am Chem Soc 128:4371–4376CrossRefGoogle Scholar
  33. Meiler J, Prompers JJ, Peti W, Griesinger C, Bruschweiler R (2001) Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins. J Am Chem Soc 123:6098–6107CrossRefGoogle Scholar
  34. Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228ADSCrossRefGoogle Scholar
  35. Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640CrossRefGoogle Scholar
  36. Richter B, Gsponer J, Varnai P, Salvatella X, Vendruscolo M (2007) The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native state ensembles of proteins. J Biomol NMR 37:117–135CrossRefGoogle Scholar
  37. Salmon L, Bouvignies G, Markwick P, Blackledge M (2011) Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales. Biochemistry 50:2735–2747CrossRefGoogle Scholar
  38. Salvatella X, Richter B, Vendruscolo M (2008) Influence of the fluctuations of the alignment tensor on the analysis of the structure and dynamics of proteins using residual dipolar couplings. J Biomol NMR 40:71–81CrossRefGoogle Scholar
  39. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan YB, Wriggers W (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346ADSCrossRefGoogle Scholar
  40. Showalter SA, Bruschweiler R (2007) Quantitative molecular ensemble interpretation of NMR dipolar couplings without restraints. J Am Chem Soc 129:4158–4159CrossRefGoogle Scholar
  41. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114ADSCrossRefGoogle Scholar
  42. Tolman JR, Ruan K (2006) NMR residual dipolar couplings as probes of biomolecular dynamics. Chem Rev 106:1720–1736CrossRefGoogle Scholar
  43. Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1997) NMR evidence for slow collective motions in cyanometmyoglobin. Nat Struct Biol 4:292–297CrossRefGoogle Scholar
  44. van Lune F, Manning L, Dijkstra K, Berendsen HJC, Scheek RM (2002) Order-parameter tensor description of HPr in a medium of oriented bicelles. J Biomol NMR 23:169–179CrossRefGoogle Scholar
  45. Vendruscolo M (2007) Determination of conformationally heterogeneous states of proteins. Curr Opin Struct Biol 17:15–20CrossRefGoogle Scholar
  46. Vendruscolo M, Dobson CM (2006) Dynamic visions of enzymatic reactions. Science 313:1586–1587CrossRefGoogle Scholar
  47. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 194:531–544CrossRefGoogle Scholar
  48. Zhang FL, Bruschweiler R (2002) Contact model for the prediction of NMR NH order parameters in globular proteins. J Am Chem Soc 124:12654–12655CrossRefGoogle Scholar
  49. Zhang Q, Sun XY, Watt ED, Al-Hashimi HM (2006) Resolving the motional modes that code for RNA adaptation. Science 311:653–656ADSCrossRefGoogle Scholar
  50. Zhang Q, Stelzer AC, Fisher CK, Al-Hashimi HM (2007) Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450:U1214–U1263CrossRefGoogle Scholar
  51. Zweckstetter M (2008) NMR: prediction of molecular alignment from structure using the PALES software. Nat Prot 3:679–690CrossRefGoogle Scholar
  52. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792CrossRefGoogle Scholar
  53. Zweckstetter M, Hummer G, Bax A (2004) Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases. Biophys J 86:3444–3460CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Rinaldo W. Montalvao
    • 1
  • Alfonso De Simone
    • 1
    • 2
  • Michele Vendruscolo
    • 1
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Division of Molecular BiosciencesImperial CollegeLondonUK

Personalised recommendations