Journal of Biomolecular NMR

, Volume 53, Issue 4, pp 293–301 | Cite as

Speeding up sequence specific assignment of IDPs

  • Wolfgang Bermel
  • Ivano Bertini
  • Isabella C. Felli
  • Leonardo Gonnelli
  • Wiktor Koźmiński
  • Alessandro Piai
  • Roberta Pierattelli
  • Jan Stanek


The characterization of intrinsically disordered proteins (IDPs) by NMR spectroscopy is made difficult by the extensive spectral overlaps. To overcome the intrinsic low-resolution of the spectra the introduction of high-dimensionality experiments is essential. We present here a set of high-resolution experiments based on direct 13C-detection which proved useful in the assignment of α-synuclein, a paradigmatic IDP. In particular, we describe the implementation of 4D HCBCACON, HCCCON, HCBCANCO, 4/5D HNCACON and HNCANCO and 3/4D HCANCACO experiments, specifically tailored for spin system identification and backbone resonances sequential assignment. The use of non-uniform-sampling in the indirect dimension and of the H-flip approach to achieve longitudinal relaxation enhancement rendered the experiments very practical.


Intrinsically disordered proteins 13C detection Non-uniform sampling Multidimensional NMR experiment Backbone assignment Spin system identification 



This work has been supported in part by the EC 7th Framework program BioNMR, contract 261863 and by the EC Marie Curie ITN program (IDPbyNMR, contract 264257).

Supplementary material

10858_2012_9639_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1292 kb)


  1. Atreya HS, Szyperski T (2005) Rapid NMR data collection. Methods Enzymol 394:78–108CrossRefGoogle Scholar
  2. Bermel W, Bertini I, Felli IC, Kümmerle R, Pierattelli R (2003) 13C direct detection experiments on the paramagnetic oxidized monomeric copper, zinc superoxide dismutase. J Am Chem Soc 125:16423–16429CrossRefGoogle Scholar
  3. Bermel W, Bertini I, Felli IC, Kümmerle R, Pierattelli R (2006a) Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J Magn Reson 178:56–64ADSCrossRefGoogle Scholar
  4. Bermel W, Bertini I, Felli IC, Lee Y-M, Luchinat C, Pierattelli R (2006b) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128:3918–3919CrossRefGoogle Scholar
  5. Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006c) 13C-detected protonless NMR spectroscopy of proteins in solution. Progr NMR Spectrosc 48:25–45CrossRefGoogle Scholar
  6. Bermel W, Felli IC, Kümmerle R, Pierattelli R (2008) 13C direct-detection biomolecular NMR. Concepts Magn Reson 32A:183–200CrossRefGoogle Scholar
  7. Bermel W, Bertini I, Csizmok V, Felli IC, Pierattelli R, Tompa P (2009a) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson 198:275–281ADSCrossRefGoogle Scholar
  8. Bermel W, Bertini I, Felli IC, Pierattelli R (2009b) Speeding up 13C direct detection NMR experiments. J Am Chem Soc 131:15339–15345CrossRefGoogle Scholar
  9. Bermel W, Bertini I, Felli IC, Peruzzini R, Pierattelli R (2010) Exclusively heteronuclear NMR experiments to obtain structural and dynamic information on proteins. ChemPhysChem 11:689–695CrossRefGoogle Scholar
  10. Bertini I, Felli IC, Gonnelli L, Vasantha Kumar MV, Pierattelli R (2011a) 13C direct-detection biomolecular NMR spectroscopy in living cells. Angew Chem Int Ed 50:1–4CrossRefGoogle Scholar
  11. Bertini I, Felli IC, Gonnelli L, Vasantha Kumar MV, Pierattelli R (2011b) High-resolution characterization of intrinsic disorder in proteins. ChemBioChem 12:2347–2352CrossRefGoogle Scholar
  12. Boehlen J-M, Bodenhausen G (1993) Experimental aspects of chirp NMR spectroscopy. J Magn Reson, Ser A 102:293–301CrossRefGoogle Scholar
  13. Csizmok V, Felli IC, Tompa P, Banci L, Bertini I (2008) Structural and dynamic characterization of intrinsically disordered human securing by NMR. J Am Chem Soc 130:16873–16879CrossRefGoogle Scholar
  14. Deschamps M, Campbell ID (2006) Cooling overall spin temperature: protein NMR experiments optimized for longitudinal relaxation effects. J Magn Reson 178:206–211ADSCrossRefGoogle Scholar
  15. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59CrossRefGoogle Scholar
  16. Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104:3607–3622CrossRefGoogle Scholar
  17. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208CrossRefGoogle Scholar
  18. Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30CrossRefGoogle Scholar
  19. Emsley L, Bodenhausen G (1992) Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. J Magn Reson 97:135–148Google Scholar
  20. Felli IC, Pierattelli R (2012) 13C direct detection NMR. In: McGreevy KS, Parigi G (eds) Bertini I, NMR of biomolecules. Wiley-Blackwell, London, pp 433–442Google Scholar
  21. Goddard TD, Kneller DG (2000) SPARKY 3. University of Califofnia, San FranciscoGoogle Scholar
  22. Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881ADSCrossRefGoogle Scholar
  23. Hsu ST, Bertoncini CW, Dobson CM (2009) Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange-broadening. J Am Chem Soc 131:7222–7223CrossRefGoogle Scholar
  24. Hu K, Vögeli B, Clore GM (2007) Spin-state selective carbon-detected HNCO with TROSY optimization in all dimensions and double echo-antiecho sensitivity enhancement in both indirect dimensions. J Am Chem Soc 129:5484–5491CrossRefGoogle Scholar
  25. Huang C, Ren G, Zhou H, Wang C (2005) A new method for purification of recombinant human alpha-synuclein in Escherichia coli. Protein Expr Purif 42:173–177CrossRefGoogle Scholar
  26. Jaravine VA, Zhuravleva AV, Permi P, Ibraghimov I, Orekhov VY (2008) Hyperdimensional NMR spectroscopy with nonlinear sampling. J Am Chem Soc 130:3927–3936CrossRefGoogle Scholar
  27. Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2006) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36:157–168CrossRefGoogle Scholar
  28. Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2007) Lineshapes and artifacts in multidimensional Fourier transform of arbitrary sampled NMR data sets. J Magn Reson 188:344–356ADSCrossRefGoogle Scholar
  29. Kazimierczuk K, Zawadzka A, Koźmiński W (2008) Optimization of random time domain sampling in multidimensional NMR. J Magn Reson 192:123–130ADSCrossRefGoogle Scholar
  30. Kazimierczuk K, Zawadzka A, Koźmiński W (2009) Narrow peaks and high dimensionalities: exploiting the advantages of random sampling. J Magn Reson 197:219–228ADSCrossRefGoogle Scholar
  31. Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, Koźmiński W (2010) Random sampling in multidimensional NMR spectroscopy. Prog NMR Spectrosc 57:420–434CrossRefGoogle Scholar
  32. Kazimierczuk K, Misiak M, Stanek J, Zawadzka-Kazimierczuk A, Koźmiński W (2012) Generalized Fourier transform for non-uniform sampled data. Top Curr Chem 316:79–124CrossRefGoogle Scholar
  33. Keller RLJ (2004) The computer aided resonance assignment tutorial. Cantina Verag, GoldauGoogle Scholar
  34. Kjaergaard M, Poulsen FM (2011) Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. J Biomol NMR 50:157–165CrossRefGoogle Scholar
  35. Kjaergaard M, Brander S, Poulsen FM (2011) Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR 49:139–149CrossRefGoogle Scholar
  36. Knoblich K, Whittaker S, Ludwig C, Michiels P, Jiang T, Schafflhausen B, Günther U (2009) Backbone assignment of the N-terminal polyomavirus large T antigen. Biomol NMR Assign 3:119–123CrossRefGoogle Scholar
  37. Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169ADSCrossRefGoogle Scholar
  38. Malmodin D, Billeter M (2005) Multiway decomposition of NMR Spectra with coupled evolution periods. J Am Chem Soc 127:13486–13487CrossRefGoogle Scholar
  39. Mittag T, Forman-Kay J (2007) Atomic-level characterization of disordered protein ensembles. Curr Opin Struct Biol 17:3–14CrossRefGoogle Scholar
  40. Narayanan RL, Duerr HN, Bilbow S, Biernat J, Mendelkow E, Zweckstetter M (2010) Automatic assignment of the intrinsically disordered protein Tau with 441-residues. J Am Chem Soc 132:11906–11907CrossRefGoogle Scholar
  41. Nováček J, Zawadzka-Kazimierczuk A, Papoušková V, Žídek L, Šanderová H, Krásny L, Koźmiński W, Sklenář V (2011) 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J Biomol NMR 50:1–11CrossRefGoogle Scholar
  42. O’Hare B, Benesi AJ, Showalter SA (2009) Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. J Magn Reson 200:354–358ADSCrossRefGoogle Scholar
  43. Pasat G, Zintsmaster JS, Peng J (2008) Direct 13C-detection for carbonyl relaxation studies of protein dynamics. J Magn Reson 193:226–232ADSCrossRefGoogle Scholar
  44. Pérez Y, Gairi M, Pons M, Bernadò P (2009) Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 391:136–148CrossRefGoogle Scholar
  45. Pervushin K, Vogeli B, Eletsky A (2002) Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902CrossRefGoogle Scholar
  46. Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015CrossRefGoogle Scholar
  47. Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043CrossRefGoogle Scholar
  48. Serber Z, Richter C, Moskau D, Boehlen J-M, Gerfin T, Marek D, Haeberli M, Baselgia L, Laukien F, Stern AS, Hoch JC, Dötsch V (2000) New carbon-detected protein NMR experiments using cryoprobes. J Am Chem Soc 122:3554–3555CrossRefGoogle Scholar
  49. Shaka AJ, Keeler J, Freeman R (1983) Evaluation of a new broadband decoupling sequence: WALTZ-16. J Magn Reson 53:313–340Google Scholar
  50. Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552Google Scholar
  51. Shimba N, Kovacs H, Stern AS, Nomura AM, Shimada I, Hoch JC, Craik CS, Dötsch V (2005) Optimization of 13C direct detection NMR methods. J Biomol NMR 30:175–179CrossRefGoogle Scholar
  52. Stanek J, Augustyniak R, Koźmiński W (2012) Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. J Magn Reson 214:91–102ADSCrossRefGoogle Scholar
  53. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533CrossRefGoogle Scholar
  54. Tompa P (2009) Structure and function of intrinsically disordered proteins. Taylor and Francis Group, Boca RatonCrossRefGoogle Scholar
  55. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins Struct Funct Genet 41:415–427CrossRefGoogle Scholar
  56. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331CrossRefGoogle Scholar
  57. Zawadzka-Kazimierczuk A, Koźmiński W, Šanderová H, Krásny L (2012) High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins. J Biomol NMR 52:329–337CrossRefGoogle Scholar
  58. Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Wolfgang Bermel
    • 1
  • Ivano Bertini
    • 2
    • 3
  • Isabella C. Felli
    • 2
    • 3
  • Leonardo Gonnelli
    • 2
  • Wiktor Koźmiński
    • 4
  • Alessandro Piai
    • 2
  • Roberta Pierattelli
    • 2
    • 3
  • Jan Stanek
    • 4
  1. 1.Bruker BioSpin GmbHRheinstettenGermany
  2. 2.CERM, University of FlorenceSesto FiorentinoItaly
  3. 3.Department of Chemistry “Ugo Schiff”University of FlorenceSesto FiorentinoItaly
  4. 4.Faculty of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations