Advertisement

Journal of Biomolecular NMR

, Volume 53, Issue 3, pp 247–256 | Cite as

A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR

  • Maria ConcistrèEmail author
  • Ole G. Johannessen
  • Neville McLean
  • Petra H. M. Bovee-Geurts
  • Richard C. D. Brown
  • Willem J. DeGrip
  • Malcolm H. Levitt
Article

Abstract

Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-13C2-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (~120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40°, it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed.

Keywords

Rhodopsin Bathorhodopsin Magic-angle spinning Double-quantum heteronuclear local field experiment Double-quantum NMR Torsional angle estimation 

Notes

Acknowledgments

MC would like to thank Giuseppe Pileio and Marina Carravetta for help during the experimental session; Andreas Brinkmann for advice and suggestions during the setting up of the 2Q-HLF experiment; and Salvatore Mamone, Giuseppe Pileio and Francesco Buda for useful discussions and suggestions. We would also like to thank H. J. M. de Groot, P. Verdegem and J. Lugtenburg for discussions during the early stages of this project. WJdG acknowledges financial support by the European Commission (E-MeP consortium; contract LSHG-CT-2004-504601).

References

  1. Andruniów T, Ferré N, Olivucci M (2004) Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proc Natl Acad Sci USA 101:17908–17913ADSCrossRefGoogle Scholar
  2. Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330ADSCrossRefGoogle Scholar
  3. Bifone A, deGroot HJM, Buda F (1997) Energy storage in the primary photoproduct of vision. J Phys Chem B 101:2954–2958CrossRefGoogle Scholar
  4. Birge RR, Einterz CM, Knapp HM, Murray LP (1998) The nature of the primary photochemical events in rhodopsin and isorhodopsin. Biophys J 53:367–385CrossRefGoogle Scholar
  5. Brinkmann A (2001) Dipolar recoupling in magic-angle-spinning nuclear magnetic resonance PhD thesis, Stockholm UniversityGoogle Scholar
  6. Carravetta M, Edén M, Johannessen OG, Luthman H, Verdegem PJE, Lugtenburg J, Sebald A, Levitt MH (2001) Estimation of carbon–carbon bond lengths and medium-range internuclear distances by solid-state nuclear magnetic resonance. J Am Chem Soc 123:10628–10638CrossRefGoogle Scholar
  7. Concistrè M, Gansmüller A, McLean N, Johannessen OG, Marin-Montesinos I, Bovee-Geurts PH, Verdegem P, Lugtenburg J, Brown RCD, DeGrip WJ, Levitt MH (2008) Double-quantum 13C nuclear magnetic resonance of bathorhodopsin, the first photointermediate in mammalian vision. J Am Chem Soc 130:10490–10491CrossRefGoogle Scholar
  8. Concistrè M, Gansmüller A, McLean N, Johannessen OG, Marın-Montesinos I, Bovee-Geurts PH, Brown RCD, DeGrip WJ, Levitt MH (2009) Light penetration and photoisomerization in rhodopsin studied by numerical simulations and double-quantum solid-state NMR. J Am Chem Soc 131:6133–6140CrossRefGoogle Scholar
  9. Creemers A, Kiihne S, Bovee-Geurts P, de Grip WJ, Lugtenburg J, de Groot HJM (2002) 1H and 13C MAS NMR evidence for pronounced ligand–protein interactions involving the ionone ring of the retinylidene chromophore in rhodopsin. Proc Natl Acad Sci 99:9101–9106ADSCrossRefGoogle Scholar
  10. de Grip WJ, Daemen FJM, Bonting SL (1980) Isolation and purification of bovine rhodopsin. Methods in Enzymol 67:301–320CrossRefGoogle Scholar
  11. Feng X, Lee JK, Sandstrom D, Edén M, Maisel H, Sebald A, Levitt MH (1996) Direct determination of a molecular torsional angle by solid-state NMR. Chem Phys Lett 257:314–320ADSCrossRefGoogle Scholar
  12. Frutos LM, Andruniów T, Santoro F, Ferré N, Olivucci M (2007) Tracking the excited state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc Natl Acad Sci USA 104:7764–7769ADSCrossRefGoogle Scholar
  13. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101ADSCrossRefGoogle Scholar
  14. Gansmüller A, Concistrè M, McLean N, Johannessen OG, Marın-Montesinos I, Bovee-Geurts PH, Verdegem P, Lugtenburg J, Brown RC, Degrip WJ, Levitt MH (2009) Towards a functional interpretation of 13C chemical shifts in bathorhodopsin. Biochim Biophys Acta 1788:1350–1357CrossRefGoogle Scholar
  15. Ganter U, Schmid E, Siebert F (1988) The photoreaction of vacuum-dried rhodopsin at low temperature: evidence for charge stabilization by water. J Photochem Photobiol, B 2:417–426CrossRefGoogle Scholar
  16. Gascon JA, Sproviero EM, Batista VS (2006) Computational studies of the primary phototransduction event in visual rhodopsin. Acc Chem Res 39:184–193CrossRefGoogle Scholar
  17. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., WallingfordGoogle Scholar
  18. Groesbeek M, Lugtenburg J (1992) Synthesis of doubly and multiply isotopically labeled retinals. J Photochem Photobiol 56:903–908CrossRefGoogle Scholar
  19. Honig B, Dinur U, Nakanishi K, Balogh-Nair V, Gawinowics MA, Arnaboldi N, Motto MG (1979) An external point-charge model for wavelength regulation in visual pigments. J Am Chem Soc 101:7084–7086CrossRefGoogle Scholar
  20. Hosomi H, Ito Y, Ohba S (1998) Ammonium and isopropylammonium salts of the fumaric acid dianion. Acta Crystallogr Sect C 54:142–145CrossRefGoogle Scholar
  21. Kandori H, Maeda A (1995) FTIR spectroscopy reveals microscopic structural changes of the protein around the rhodopsin chromophore upon photoisomerization. Biochemistry 34:14220–14229CrossRefGoogle Scholar
  22. Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA (2005) Structural observation of the primary isomerization in vision with femtosecond stimulated Raman. Science 310:1006–1009ADSCrossRefGoogle Scholar
  23. Lai WC, McLean N, Gansmüller A, Verhoeven MA, Antonioli GC, Carravetta M, Duma L, Bovee-Geurts PHM, Johannessen OG, de Groot HJM, Lugtenburg J, Emsley L, Brown SP, Brown RCD, de Grip WJ, Levitt MH (2006) Accurate measurements of 13C-13C J-couplings in the rhodopsin chromophore by double-quantum solid-state NMR. J Am Chem Soc 128:3878–3879CrossRefGoogle Scholar
  24. Levitt MH (2002) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance: supplementary volume. Wiley, Chichester, pp 165–196Google Scholar
  25. Levitt MH (2008) Spin dynamics. Basics of nuclear magnetic resonance, 2nd edn, WileyGoogle Scholar
  26. Marin-Montesinos I, Brouwer D, Antonioli GC, Lai WC, Levitt MH (2005) Heteronuclear decoupling interference during symmetry-based homonuclear recoupling in solid-state NMR. J Magn Reson 177:307–317ADSCrossRefGoogle Scholar
  27. McLean NJ, Gansmuller A, Concistre M, Brown LJ, Levitt MH, Brown RCD (2011) Syntheses of 13C2-labelled 11Z-retinals. Tetrahedron 67:8404–8410CrossRefGoogle Scholar
  28. Nishimura S, Kandori H, Nakagawa M, Tsuda M, Maeda A (1997a) Structural dynamics of water and the peptide backbone around the schiff base associated with the light-activated process of octopus rhodopsin. Biochemistry 36:864–870CrossRefGoogle Scholar
  29. Nishimura S, Kandori H, Maeda A (1997b) Transmembrane signaling mediated by water in Bovine Rhodopsin. Photochem Photobiol 66:796–801CrossRefGoogle Scholar
  30. Numerical Recipes in C. The art of scientific computing, 2nd Edn, 1992, Cambridge University PressGoogle Scholar
  31. Palczewski K (2006) G Protein–Coupled Receptor Rhodopsin. Annu Rev Biochem 75:743–767CrossRefGoogle Scholar
  32. Paul S, Thakur RS, Goswami M, Sauerwein AC, Mamone S, Concistré M, Forster H, Levitt MH, Madhu PK (2009) Supercycled homonuclear dipolar decoupling sequences in solid-state NMR. J Magn Reson 197:14–19ADSCrossRefGoogle Scholar
  33. Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies RA, Garavelli M, Cerullo G (2010) Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440–443ADSCrossRefGoogle Scholar
  34. Rath P, DeGrip WJ, Rothschild KJ (1998) Photoactivation of rhodopsin causes an increased hydrogen-deuterium exchange of buried peptide groups. Biophys J 74:192–198CrossRefGoogle Scholar
  35. Rohrig UF, Guidoni L, Laio A, Frank I, Rothlisberger U (2004) A molecular spring for vision. J Am Chem Soc 126:15328–15329CrossRefGoogle Scholar
  36. Schapiro I, Ryazantsev MN, Frutos LM, Ferré N, Lindh R, Olivucci M (2011) Photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J Am Chem Soc 133:3354–3364CrossRefGoogle Scholar
  37. Schreiber M, Buss V (2003) Origin of the bathochromic shift in the early photointermediates of the rhodopsin visual cycle: a CASSCF/CASPT2 study. Int J Quant Chem 95:882–889CrossRefGoogle Scholar
  38. Schreiber M, Sugihara M, Okada T, Buss V (2006) Quantum mechanical studies on the crystallographic model of bathorhodopsin. Angew Chem Int Ed 45:4274–4277CrossRefGoogle Scholar
  39. Vinogradov E, Madhu PK, Vega S (1999) High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment. Chem Phys Lett 314:443–450ADSCrossRefGoogle Scholar
  40. Vinogradov E, Madhu PK, Vega S (2002) Proton spectroscopy in solid state nuclear magnetic resonance with windowed phase modulated Lee–Goldburg decoupling sequences. Chem Phys Lett 354:193–202ADSCrossRefGoogle Scholar
  41. Wald G (1968) The molecular basis of visual excitation. Nature 219:800–807ADSCrossRefGoogle Scholar
  42. Wolfram Research Inc. (2010) Mathematica edition: version 8.0. Champaign, IllinoisGoogle Scholar
  43. Yan ECY, Ganim Z, Kazmi MA, Chang BSW, Sakmar TP, Mathies RA (2004) Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct. Biochemistry 43:10867–10876CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Maria Concistrè
    • 1
    Email author
  • Ole G. Johannessen
    • 1
    • 2
  • Neville McLean
    • 1
  • Petra H. M. Bovee-Geurts
    • 3
  • Richard C. D. Brown
    • 1
  • Willem J. DeGrip
    • 3
  • Malcolm H. Levitt
    • 1
  1. 1.School of ChemistryUniversity of SouthamptonSouthamptonUK
  2. 2.School of Engineering ScienceUniversity of SouthamptonSouthamptonUK
  3. 3.Nijmegen Centre for Molecular Life SciencesRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations