Advertisement

Journal of Biomolecular NMR

, Volume 52, Issue 4, pp 289–302 | Cite as

RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

  • Arash Bahrami
  • Lawrence J. ClosII
  • John L. Markley
  • Samuel E. Butcher
  • Hamid R. EghbalniaEmail author
Article

Abstract

The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation (1H–15N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy (1H–1H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a majority of the NMR resonances, even when the initial predictions are only modestly accurate. RNA-PAIRS is available as a public web-server at http://pine.nmrfam.wisc.edu/RNA/.

Keywords

RNA Assignment Imino assignment Nuclear Magnetic Resonance NMR Spectroscopy Secondary structure 

Notes

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10858_2012_9603_MOESM1_ESM.pdf (279 kb)
Supplementary material 1 (PDF 279 kb)

References

  1. Ampt KAM, van der Werf RM, Nelissen FHT et al (2009) The unstable part of the apical stem of duck hepatitis B virus epsilon shows enhanced base pair opening but not pico- to nanosecond dynamics and is essential for reverse transcriptase binding. Biochemistry 48:10499–10508. doi: 10.1021/bi9011385 CrossRefGoogle Scholar
  2. Andronescu M, Aguirre-Hernández R, Condon A, Hoos HH (2003) RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Res 31:3416–3422CrossRefGoogle Scholar
  3. Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5:e1000307. doi: 10.1371/journal.pcbi.1000307 CrossRefGoogle Scholar
  4. Berjanskii M, Tang P, Liang J et al (2009) GeNMR: a web server for rapid NMR-based protein structure determination. Nucleic Acids Res 37:W670–W677. doi: 10.1093/nar/gkp280 CrossRefGoogle Scholar
  5. Clote P (2005) RNALOSS: a web server for RNA locally optimal secondary structures. Nucleic Acids Res 33:W600–W604. doi: 10.1093/nar/gki382 CrossRefGoogle Scholar
  6. Cornish PV, Hennig M, Giedroc DP (2005) A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting. Proc Natl Acad Sci USA 102:12694–12699. doi: 10.1073/pnas.0506166102 ADSCrossRefGoogle Scholar
  7. Cromsigt JA, Hilbers CW, Wijmenga SS (2001) Prediction of proton chemical shifts in RNA. Their use in structure refinement and validation. J Biomol NMR 21:11–29CrossRefGoogle Scholar
  8. D’Souza V, Dey A, Habib D, Summers MF (2004) NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. J Mol Biol 337:427–442. doi: 10.1016/j.jmb.2004.01.037 CrossRefGoogle Scholar
  9. Davis JH, Tonelli M, Scott LG et al (2005) RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. J Mol Biol 351:371–382. doi: 10.1016/j.jmb.2005.05.069 CrossRefGoogle Scholar
  10. Desjardins G, Bonneau E, Girard N et al (2011) NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site. Nucleic Acids Res 39:4427–4437. doi: 10.1093/nar/gkq1244 CrossRefGoogle Scholar
  11. Dimitrov RA, Zuker M (2004) Prediction of hybridization and melting for double-stranded nucleic acids. Biophys J 87:215–226. doi: 10.1529/biophysj.103.020743 CrossRefGoogle Scholar
  12. Ding Y, Lawrence C (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31:7280–7301CrossRefGoogle Scholar
  13. Dirks RM, Lin M, Winfree E, Pierce NA (2004) Paradigms for computational nucleic acid design. Nucleic Acids Res 32:1392–1403. doi: 10.1093/nar/gkh291 CrossRefGoogle Scholar
  14. Doshi KJ, Cannone JJ, Cobaugh CW, Gutell RR (2004) Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinform 5:105. doi: 10.1186/1471-2105-5-105 CrossRefGoogle Scholar
  15. Eghbalnia HR, Bahrami A, Wang L et al (2005a) Probabilistic identification of spin systems and their assignments including coil-helix inference as output (PISTACHIO). J Biomol NMR 32:219–233. doi: 10.1007/s10858-005-7944-6 CrossRefGoogle Scholar
  16. Eghbalnia HR, Wang L, Bahrami A et al (2005b) Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements. J Biomol NMR 32:71–81. doi: 10.1007/s10858-005-5705-1 CrossRefGoogle Scholar
  17. Fourmy D, Yoshizawa S, Puglisi JD (1998) Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J Mol Biol 277:333–345. doi: 10.1006/jmbi.1997.1551 CrossRefGoogle Scholar
  18. Fox BG, Goulding C, Malkowski MG et al (2008) Structural genomics: from genes to structures with valuable materials and many questions in between. Nature Methods 5:129–132. doi: 10.1038/nmeth0208-129 CrossRefGoogle Scholar
  19. Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. Chembiochem 4:936–962. doi: 10.1002/cbic.200300700 CrossRefGoogle Scholar
  20. Georgii H-O (1988) Gibbs measures and phase transitions. W. de Gruyter, BerlinzbMATHCrossRefGoogle Scholar
  21. Giedroc DP, Cornish PV (2009) Frameshifting RNA pseudoknots: structure and mechanism. Virus Res 139:193–208. doi: 10.1016/j.virusres.2008.06.008 CrossRefGoogle Scholar
  22. Gruber AR, Lorenz R, Bernhart SH et al (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70–W74. doi: 10.1093/nar/gkn188 CrossRefGoogle Scholar
  23. Güntert P (2009) Automated structure determination from NMR spectra. Eur Biophys J EBJ 38:129–143. doi: 10.1007/s00249-008-0367-z CrossRefGoogle Scholar
  24. Gutell RR, Lee JC, Cannone JJ (2002) The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol 12:301–310CrossRefGoogle Scholar
  25. Hart JM, Kennedy SD, Mathews DH, Turner DH (2008) NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon. J Am Chem Soc 130:10233–10239. doi: 10.1021/ja8026696 CrossRefGoogle Scholar
  26. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431CrossRefGoogle Scholar
  27. Hoogstraten CG, Legault P, Pardi A (1998) NMR solution structure of the lead-dependent ribozyme: evidence for dynamics in RNA catalysis. J Mol Biol 284:337–350. doi: 10.1006/jmbi.1998.2182 CrossRefGoogle Scholar
  28. Huang C, Darwiche A (1996) Inference in belief networks: a procedural guide. Int J Approx Reason 15:225–263MathSciNetzbMATHCrossRefGoogle Scholar
  29. Huppler A, Nikstad LJ, Allmann AM et al (2002) Metal binding and base ionization in the U6 RNA intramolecular stem-loop structure. Nat Struct Biol 9:431–435. doi: 10.1038/nsb800 CrossRefGoogle Scholar
  30. Ihle Y, Ohlenschläger O, Häfner S et al (2005) A novel cGUUAg tetraloop structure with a conserved yYNMGg-type backbone conformation from cloverleaf 1 of bovine enterovirus 1 RNA. Nucleic Acids Res 33:2003–2011. doi: 10.1093/nar/gki501 CrossRefGoogle Scholar
  31. Juan V, Wilson C (1999) RNA secondary structure prediction based on free energy and phylogenetic analysis. J Mol Biol 289:935–947. doi: 10.1006/jmbi.1999.2801 CrossRefGoogle Scholar
  32. Kang M, Peterson R, Feigon J (2009) Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell 33:784–790. doi: 10.1016/j.molcel.2009.02.019 CrossRefGoogle Scholar
  33. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31:3423–3428CrossRefGoogle Scholar
  34. Kruschel D, Sigel RKO (2009) NMR solution structure of the d3′-hairpin including the exon binding site 1 (EBS1) of the group II intron Sc.ai5(gamma). PDB doi: 10.2210/pdb2k63/pdb
  35. Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist Q 2:83–97. doi: 10.1002/nav.3800020109 CrossRefGoogle Scholar
  36. Le SY, Chen JH, Maizel JVJ (1990) Efficient searches for unusual folding regions in RNA sequences. In: Sarma RH, Sarma MH (eds) Structure and methods: human genome initiative and DNA recombination. Adenine Press, Schenectady, pp 127–136Google Scholar
  37. Lukavsky PJ, Kim I, Otto GA, Puglisi JD (2003) Structure of HCV IRES domain II determined by NMR. Nat Struct Biol 10:1033–1038. doi: 10.1038/nsb1004 CrossRefGoogle Scholar
  38. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam LM, Neyman J (eds) Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, pp 281–297Google Scholar
  39. Marcheschi RJ, Staple DW, Butcher SE (2007) Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop. J Mol Biol 373:652–663. doi: 10.1016/j.jmb.2007.08.033 CrossRefGoogle Scholar
  40. Mathews DH (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA (New York, NY) 10:1178–1190. doi: 10.1261/rna.7650904 CrossRefGoogle Scholar
  41. Mathews DH, Turner DH (2006) Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 16:270–278. doi: 10.1016/j.sbi.2006.05.010 CrossRefGoogle Scholar
  42. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940. doi: 10.1006/jmbi.1999.2700 CrossRefGoogle Scholar
  43. Mathews DH, Disney MD, Childs JL et al (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101:7287–7292. doi: 10.1073/pnas.0401799101 ADSCrossRefGoogle Scholar
  44. Matlab (2010) R2010a : the MathWorks Inc. Natick, MAGoogle Scholar
  45. Miyazaki Y, Irobalieva RN, Tolbert B et al (2010) Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo-electron tomography. J Mol Biol 404:751–772. doi: 10.1016/j.jmb.2010.09.009 CrossRefGoogle Scholar
  46. Morosyuk SV, Cunningham PR, SantaLucia J (2001) Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA. II. NMR solution structure. J Mol Biol 307:197–211. doi: 10.1006/jmbi.2000.4431 CrossRefGoogle Scholar
  47. Nagaswamy U, Larios-Sanz M, Hury J et al (2002) NCIR: a database of non-canonical interactions in known RNA structures. Nucleic Acids Res 30:395–397CrossRefGoogle Scholar
  48. Nozinovic S, Fürtig B, Jonker HRA et al (2010) High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res 38:683–694. doi: 10.1093/nar/gkp956 CrossRefGoogle Scholar
  49. Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818. doi: 10.1038/nature03607 ADSCrossRefGoogle Scholar
  50. Reiter NJ, Maher LJ, Butcher SE (2008) DNA mimicry by a high-affinity anti-NF-kappaB RNA aptamer. Nucleic Acids Res 36:1227–1236. doi: 10.1093/nar/gkm1141 CrossRefGoogle Scholar
  51. Rivas E, Eddy SR (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol 285:2053–2068. doi: 10.1006/jmbi.1998.2436 CrossRefGoogle Scholar
  52. Sashital DG, Cornilescu G, McManus CJ et al (2004) U2–U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol 11:1237–1242. doi: 10.1038/nsmb863 CrossRefGoogle Scholar
  53. Sashital DG, Venditti V, Angers CG et al (2007) Structure and thermodynamics of a conserved U2 snRNA domain from yeast and human. RNA (New York, NY) 13:328–338. doi: 10.1261/rna.418407 CrossRefGoogle Scholar
  54. Sato K, Hamada M, Asai K, Mituyama T (2009) CENTROIDFOLD: a web server for RNA secondary structure prediction. Nucleic Acids Res 37:W277–W280. doi: 10.1093/nar/gkp367 CrossRefGoogle Scholar
  55. Shen Y, Bax A (2010) SPARTA + : a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48:13–22. doi: 10.1007/s10858-010-9433-9 CrossRefGoogle Scholar
  56. Shen Y, Vernon R, Baker D, Bax A (2009) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78. doi: 10.1007/s10858-008-9288-5 CrossRefGoogle Scholar
  57. Smyth P (1997) Belief networks, hidden Markov models, and Markov random fields: a unifying view. Pattern Recogn Lett 18:1261–1268. doi: 10.1016/S0167-8655(97)01050-7 ADSCrossRefGoogle Scholar
  58. Staple DW, Butcher SE (2003) Solution structure of the HIV-1 frameshift inducing stem-loop RNA. Nucleic Acids Res 31:4326–4331CrossRefGoogle Scholar
  59. Stich M, Lázaro E, Manrubia SC (2010) Phenotypic effect of mutations in evolving populations of RNA molecules. BMC Evol Biol 10:46. doi: 10.1186/1471-2148-10-46 CrossRefGoogle Scholar
  60. Stratmann D, Guittet E, van Heijenoort C (2010) Robust structure-based resonance assignment for functional protein studies by NMR. J Biomol NMR 46:157–173. doi: 10.1007/s10858-009-9390-3 CrossRefGoogle Scholar
  61. Tatikonda S, Jordan MI (2002) Loopy belief propagation and Gibbs measures. In Darwiche A, Friedman N (eds) UAI. Morgan Kaufmann, pp 493–500 Google Scholar
  62. Tavares TJ, Beribisky AV, Johnson PE (2009) Structure of the cytosine-cytosine mismatch in the thymidylate synthase mRNA binding site and analysis of its interaction with the aminoglycoside paromomycin. RNA (New York, NY) 15:911–922. doi: 10.1261/rna.1514909 CrossRefGoogle Scholar
  63. Theimer CA, Finger LD, Trantirek L, Feigon J (2003) Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. Proc Natl Acad Sci USA 100:449–454. doi: 10.1073/pnas.242720799 ADSCrossRefGoogle Scholar
  64. Theimer CA, Blois CA, Feigon J (2005) Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Molecular cell 17:671–682. doi: 10.1016/j.molcel.2005.01.017 CrossRefGoogle Scholar
  65. Theimer CA, Jády BE, Chim N et al (2007) Structural and functional characterization of human telomerase RNA processing and cajal body localization signals. Mol Cell 27:869–881. doi: 10.1016/j.molcel.2007.07.017 CrossRefGoogle Scholar
  66. Ulrich EL, Akutsu H, Doreleijers JF et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408. doi: 10.1093/nar/gkm957 CrossRefGoogle Scholar
  67. Wang Y-X, Zuo X, Wang J et al (2010) Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering. Methods (San Diego, Calif) 52:180–191. doi: 10.1016/j.ymeth.2010.06.009 CrossRefGoogle Scholar
  68. Xia T, SantaLucia J, Burkard ME et al (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37:14719–14735CrossRefGoogle Scholar
  69. Yedidia JS, Freeman WT, Weiss Y (2005) Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans Inf Theory 51:2282–2312. doi: 10.1109/TIT.2005.850085 MathSciNetCrossRefGoogle Scholar
  70. Ying X, Luo H, Luo J, Li W (2004) RDfolder: a web server for prediction of RNA secondary structure. Nucleic Acids Res 32:W150–W153. doi: 10.1093/nar/gkh445 CrossRefGoogle Scholar
  71. Zhang Q, Kim N-K, Peterson RD et al (2010) Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA. Proc Natl Acad Sci USA 107:18761–18768. doi: 10.1073/pnas.1013269107 ADSCrossRefGoogle Scholar
  72. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Arash Bahrami
    • 1
  • Lawrence J. ClosII
    • 1
  • John L. Markley
    • 1
    • 2
  • Samuel E. Butcher
    • 1
    • 2
  • Hamid R. Eghbalnia
    • 3
    Email author
  1. 1.National Magnetic Resonance Facility at MadisonMadisonUSA
  2. 2.Biochemistry DepartmentUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Molecular and Cellular PhysiologyUniversity of CincinnatiCincinnatiUSA

Personalised recommendations