Journal of Biomolecular NMR

, 51:185 | Cite as

Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

  • Alexander Lemak
  • Adelinda Yee
  • Irina BezsonovaEmail author
  • Sirano Dhe-PaganonEmail author
  • Cheryl H. ArrowsmithEmail author


Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X4-Cys-X4-Cys-X28-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two α-helicies.


Ube3A E6-AP E3A ubiquitin ligase AZUL Angelman syndrome Zn-finger HPV NMR 



Authors are thankful to Peter Loppnau for Ube3A constructs cloning. This work is supported by the US National Institute of Health Protein Structure Initiative (P50-GM62413-01 and GM67965) through the Northeast Structural and the Structural Genomics Consortium a registered charity (number 1097737) that receives funds from the Canadian Institutes of Health Research, the Canadian Foundation for Innovation, Eli Lilly, Genome Canada through the Ontario Genomics Institute, GlaxoSmithKline, Novartis, the Ontario Minstry of Research and Innovation, Pfizer, and the Wellcome Trust. CHA holds a Canada Research Chair in Structural Proteomics. IB is supported by grant 1P30GM092369 from the NIH.


  1. Alberts IL, Nadassy K, Wodak SJ (1998) Analysis of zinc binding sites in protein crystal structures. Protein Sci 7(8):1700–1716CrossRefGoogle Scholar
  2. Bai JL, Qu YJ et al (2011) A novel missense mutation of the ubiquitin protein ligase E3A gene in a patient with Angelman syndrome. Chin Med J Engl 124(1):84–88Google Scholar
  3. Beaudenon S, Huibregtse JM (2008) HPV E6, E6AP and cervical cancer. BMC Biochem 9 suppl 1:S4.Google Scholar
  4. Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66(4):778–795CrossRefGoogle Scholar
  5. Brünger AT, Adams PD et al (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921CrossRefGoogle Scholar
  6. Cooper EM, Hudson AW et al (2004) Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein. J Biol Chem 279(39):41208–41217CrossRefGoogle Scholar
  7. Delaglio F, Grzesiek S et al (1995) Nmrpipe—a multidimensional spectral processing system based on unix Pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  8. Goddard TD, Kneller DG (2003) Sparky—NMR assignment and integration software.Google Scholar
  9. Greer PL, Hanayama R et al (2010) The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140(5):704–716CrossRefGoogle Scholar
  10. Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378Google Scholar
  11. Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38(Web Server issue): W545–W549Google Scholar
  12. Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674CrossRefGoogle Scholar
  13. Kay LE (1995) Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog Biophys Mol Biol 63(3):277–299CrossRefGoogle Scholar
  14. Koradi R, Billeter M and Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(1):51–55, 29–32.Google Scholar
  15. Kornhaber GJ, Snyder D, Moseley HNB, Montelione GT (2006) Identification of zinc-ligated cysteine residues based on C-13 alpha and C-13 beta chemical shift data. J Biomol NMR 34(4):259–269CrossRefGoogle Scholar
  16. Lemak A, Gutmanas A et al (2011) A novel strategy for NMR resonance assignment and protein structure determination. J Biomol NMR 49(1):27–38CrossRefGoogle Scholar
  17. Linge JP, Williams MA et al (2003) Refinement of protein structures in explicit solvent. Proteins 50(3):496–506CrossRefGoogle Scholar
  18. Malzac P, Webber H et al (1998) Mutation analysis of UBE3A in Angelman syndrome patients. Am J Hum Genet 62(6):1353–1360CrossRefGoogle Scholar
  19. Shen Y, Lange O et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105(12):4685–4690ADSCrossRefGoogle Scholar
  20. Walboomers JM, Jacobs MV et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19CrossRefGoogle Scholar
  21. Williams CA, Driscoll DJ, Dagli AI (2010) Clinical and genetic aspects of Angelman syndrome. Genet Med 12(7):385–395CrossRefGoogle Scholar
  22. Yee A, Chang X et al (2002) An NMR approach to structural proteomics. Proc Natl Acad Sci USA 99(4):1825–1830ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical BiophysicsUniversity of Toronto, and Northeast Structural Genomics ConsortiumTorontoCanada
  2. 2.Department of Molecular Microbial and Structural BiologyUniversity of Connecticut Health CenterFarmingtonUSA
  3. 3.Structural Genomics ConsortiumUniversity of TorontoTorontoCanada
  4. 4.Department of PhysiologyUniversity of TorontoTorontoCanada

Personalised recommendations