Journal of Biomolecular NMR

, 51:57

The feasibility of parameterizing four-state equilibria using relaxation dispersion measurements

  • Pilong Li
  • Ilídio R. S. Martins
  • Michael K. Rosen
Article

Abstract

Coupled equilibria play important roles in controlling information flow in biochemical systems, including allosteric molecules and multidomain proteins. In the simplest case, two equilibria are coupled to produce four interconverting states. In this study, we assessed the feasibility of determining the degree of coupling between two equilibria in a four-state system via relaxation dispersion measurements. A major bottleneck in this effort is the lack of efficient approaches to data analysis. To this end, we designed a strategy to efficiently evaluate the smoothness of the target function surface (TFS). Using this approach, we found that the TFS is very rough when fitting benchmark CPMG data to all adjustable variables of the four-state equilibria. After constraining a portion of the adjustable variables, which can often be achieved through independent biochemical manipulation of the system, the smoothness of TFS improves dramatically, although it is still insufficient to pinpoint the solution. The four-state equilibria can be finally solved with further incorporation of independent chemical shift information that is readily available. We also used Monte Carlo simulations to evaluate how well each adjustable parameter can be determined in a large kinetic and thermodynamic parameter space and how much improvement can be achieved in defining the parameters through additional measurements. The results show that in favorable conditions the combination of relaxation dispersion and biochemical manipulation allow the four-state equilibrium to be parameterized, and thus coupling strength between two processes to be determined.

Keywords

Allostery Allosteric coupling strength Relaxation dispersion Curve fitting Four-state equilibrium 

References

  1. Acuner Ozbabacan SE, Gursoy A, Keskin O, Nussinov R (2010) Conformational ensembles, signal transduction and residue hot spots: application to drug discovery. Curr Opin Drug Discov Devel 13:527–537Google Scholar
  2. Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5:808–814CrossRefGoogle Scholar
  3. Bosco DA, Eisenmesser EZ, Clarkson MW, Wolf-Watz M, Labeikovsky W, Millet O, Kern D (2010) Dissecting the microscopic steps of the cyclophilin A enzymatic cycle on the biological HIV-1 capsid substrate by NMR. J Mol Biol 403:723–738CrossRefGoogle Scholar
  4. Buck M, Xu W, Rosen MK (2004) A two-state allosteric model for autoinhibition rationalizes WASP signal integration and targeting. J Mol Biol 338:271–285CrossRefGoogle Scholar
  5. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638CrossRefADSGoogle Scholar
  6. Dueber JE, Yeh BJ, Chak K, Lim WA (2003) Reprogramming control of an allosteric signaling switch through modular recombination. Science (New York, NY) 301:1904–1908CrossRefADSGoogle Scholar
  7. Eisenmesser EZ, Bosco DA, Akke M, Kern D (2002) Enzyme dynamics during catalysis. Science 295:1520–1523CrossRefADSGoogle Scholar
  8. Faraldo-Gomez JD, Roux B (2007) On the importance of a funneled energy landscape for the assembly and regulation of multidomain Src tyrosine kinases. Proc Natl Acad Sci USA 104:13643–13648CrossRefADSGoogle Scholar
  9. Fenton AW (2008) Allostery: an illustrated definition for the ‘second secret of life’. Trends Biochem Sci 33:420–425CrossRefGoogle Scholar
  10. Goodey NM, Benkovic SJ (2008) Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4:474–482CrossRefGoogle Scholar
  11. Grey MJ, Wang C, Palmer AG III (2003) Disulfide bond isomerization in basic pancreatic trypsin inhibitor: multisite chemical exchange quantified by CPMG relaxation dispersion and chemical shift modeling. J Am Chem Soc 125:14324–14335CrossRefGoogle Scholar
  12. Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins 57:433–443CrossRefGoogle Scholar
  13. Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J, Superti-Furga G (2003) A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112:845–857CrossRefGoogle Scholar
  14. Ishima R, Torchia DA (2005) Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters. J Biomol NMR 32:41–54CrossRefGoogle Scholar
  15. Kalodimos CG (2011) NMR reveals novel mechanisms of protein activity regulation. Protein Sci 20:773–782CrossRefGoogle Scholar
  16. Kar G, Keskin O, Gursoy A, Nussinov R (2010) Allostery and population shift in drug discovery. Curr Opin Pharmacol 10:715–722CrossRefGoogle Scholar
  17. Kern D, Zuiderweg ER (2003) The role of dynamics in allosteric regulation. Curr Opin Struct Biol 13:748–757CrossRefGoogle Scholar
  18. Kern D, Eisenmesser EZ, Wolf-Watz M (2005) Enzyme dynamics during catalysis measured by NMR spectroscopy. Methods Enzymol 394:507–524CrossRefGoogle Scholar
  19. Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430:586–590CrossRefADSGoogle Scholar
  20. Korzhnev DM, Neudecker P, Mittermaier A, Orekhov VY, Kay LE (2005) Multiple-site exchange in proteins studied with a suite of six NMR relaxation dispersion experiments: an application to the folding of a Fyn SH3 domain mutant. J Am Chem Soc 127:15602–15611CrossRefGoogle Scholar
  21. Korzhnev DM, Bezsonova I, Evanics F, Taulier N, Zhou Z, Bai Y, Chalikian TV, Prosser RS, Kay LE (2006) Probing the transition state ensemble of a protein folding reaction by pressure-dependent NMR relaxation dispersion. J Am Chem Soc 128:5262–5269CrossRefGoogle Scholar
  22. Kovrigin EL, Kempf JG, Grey MJ, Loria JP (2006) Faithful estimation of dynamics parameters from CPMG relaxation dispersion measurements. J Magn Reson 180:93–104CrossRefADSGoogle Scholar
  23. Leung DW, Rosen MK (2005) The nucleotide switch in Cdc42 modulates coupling between the GTPase-binding and allosteric equilibria of Wiskott-Aldrich syndrome protein. Proc Natl Acad Sci USA 102:5685–5690CrossRefADSGoogle Scholar
  24. Leung DW, Otomo C, Chory J, Rosen MK (2008) Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway. Proc Natl Acad Sci USA 105:12797–12802CrossRefADSGoogle Scholar
  25. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J (2006) A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol 4:e144CrossRefGoogle Scholar
  26. Li P, Martins IR, Amarasinghe GK, Rosen MK (2008) Internal dynamics control activation and activity of the autoinhibited Vav DH domain. Nat Struct Mol Biol 15:613–618CrossRefGoogle Scholar
  27. Lietha D, Cai X, Ceccarelli DF, Li Y, Schaller MD, Eck MJ (2007) Structural basis for the autoinhibition of focal adhesion kinase. Cell 129:1177–1187CrossRefGoogle Scholar
  28. Lim WA (2002) The modular logic of signaling proteins: building allosteric switches from simple binding domains. Curr Opin Struct Biol 12:61–68CrossRefGoogle Scholar
  29. Loria JP, Berlow RB, Watt ED (2008) Characterization of enzyme motions by solution NMR relaxation dispersion. Acc Chem Res 41:214–221CrossRefGoogle Scholar
  30. Lundstrom P, Vallurupalli P, Religa TL, Dahlquist FW, Kay LE (2007) A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity. J Biomol NMR 38:79–88CrossRefGoogle Scholar
  31. Masterson LR, Mascioni A, Traaseth NJ, Taylor SS, Veglia G (2008) Allosteric cooperativity in protein kinase A. Proc Natl Acad Sci USA 105:506–511CrossRefADSGoogle Scholar
  32. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691CrossRefADSGoogle Scholar
  33. Mittermaier AK, Kay LE (2009) Observing biological dynamics at atomic resolution using NMR. Trends Biochem Sci 34:601–611CrossRefGoogle Scholar
  34. Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee CH, Kuriyan J, Miller WT (1997) Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385:650–653CrossRefADSGoogle Scholar
  35. Monod J, Changeux JP, Jacob F (1963) Allosteric proteins and cellular control systems. J Mol Biol 6:306–329CrossRefGoogle Scholar
  36. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118CrossRefGoogle Scholar
  37. Neudecker P, Korzhnev DM, Kay LE (2006) Assessment of the effects of increased relaxation dispersion data on the extraction of 3-site exchange parameters characterizing the unfolding of an SH3 domain. J Biomol NMR 34:129–135CrossRefGoogle Scholar
  38. Palmer AG III, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238CrossRefGoogle Scholar
  39. Peterson JR, Bickford LC, Morgan D, Kim AS, Ouerfelli O, Kirschner MW, Rosen MK (2004) Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat Struct Mol Biol 11:747–755CrossRefGoogle Scholar
  40. Pluskey S, Wandless TJ, Walsh CT, Shoelson SE (1995) Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains. J Biol Chem 270:2897–2900CrossRefGoogle Scholar
  41. Prehoda KE, Scott JA, Mullins RD, Lim WA (2000) Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290:801–806CrossRefADSGoogle Scholar
  42. Skrynnikov NR, Dahlquist FW, Kay LE (2002) Reconstructing NMR spectra of “invisible” excited protein states using HSQC and HMQC experiments. J Am Chem Soc 124:12352–12360CrossRefGoogle Scholar
  43. Sondermann H, Soisson SM, Boykevisch S, Yang SS, Bar-Sagi D, Kuriyan J (2004) Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119:393–405CrossRefGoogle Scholar
  44. Stratton MM, Loh SN (2011) Converting a protein into a switch for biosensing and functional regulation. Protein Sci 20:19–29CrossRefGoogle Scholar
  45. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025CrossRefADSGoogle Scholar
  46. Thisted RA (1988) Elements of statistical computing. Chapman and Hall, LondonMATHGoogle Scholar
  47. Tolkatchev D, Xu P, Ni F (2003) Probing the kinetic landscape of transient peptide-protein interactions by use of peptide (15)n NMR relaxation dispersion spectroscopy: binding of an antithrombin peptide to human prothrombin. J Am Chem Soc 125:12432–12442CrossRefGoogle Scholar
  48. Tzeng SR, Kalodimos CG (2011) Protein dynamics and allostery: an NMR view. Curr Opin Struct Biol 21:62–67CrossRefGoogle Scholar
  49. Vallee-Belisle A, Plaxco KW (2010) Structure-switching biosensors: inspired by Nature. Curr Opin Struct Biol 20:518–526CrossRefGoogle Scholar
  50. Vogtherr M, Saxena K, Hoelder S, Grimme S, Betz M, Schieborr U, Pescatore B, Robin M, Delarbre L, Langer T et al (2006) NMR characterization of kinase p38 dynamics in free and ligand-bound forms. Angew Chem Int Ed Engl 45:993–997CrossRefGoogle Scholar
  51. Wen SH, Hsiao CK (2007) A grid-search algorithm for optimal allocation of sample size in two-stage association studies. J Hum Genet 52:650–658CrossRefGoogle Scholar
  52. Woessner DE (1961) Nuclear transfer effects in nuclear magnetic resonance pulse experiments. J Chem Phys 35:41–47CrossRefADSGoogle Scholar
  53. Wright CM, Heins RA, Ostermeier M (2007) As easy as flipping a switch? Curr Opin Chem Biol 11:342–346CrossRefGoogle Scholar
  54. Yohe ME, Rossman K, Sondek J (2008) Role of the C-terminal SH3 domain and N-terminal tyrosine phosphorylation in regulation of Tim and related Dbl-family proteins. Biochemistry 47:6827–6839CrossRefGoogle Scholar
  55. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J (2001) Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105:115–126CrossRefGoogle Scholar
  56. Yu B, Martins IR, Li P, Amarasinghe GK, Umetani J, Fernandez-Zapico ME, Billadeau DD, Machius M, Tomchick DR, Rosen MK (2010) Structural and energetic mechanisms of cooperative autoinhibition and activation of Vav1. Cell 140:246–256CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Pilong Li
    • 1
  • Ilídio R. S. Martins
    • 1
    • 2
  • Michael K. Rosen
    • 1
  1. 1.Department of Biochemistry and Howard Hughes Medical InstituteUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Departamento de BioquímicaFaculdade de Ciências e Tecnologia da Universidade de CoimbraCoimbraPortugal

Personalised recommendations