Journal of Biomolecular NMR

, Volume 50, Issue 2, pp 147–155 | Cite as

relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins

  • Michael Bieri
  • Edward J. d’Auvergne
  • Paul R. Gooley
Article

Abstract

Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

Keywords

Graphical user interface GUI Lipari and Szabo model-free analysis NMR spin relaxation Protein dynamics Relax software 

Abbreviations

CSA

Chemical shift anisotropy

GUI

Graphical user interface

HSQC

Heteronuclear single quantum coherence

OMP

Olfactory marker protein

NOE

Nuclear overhauser effect

Rex

Chemical exchange relaxation

Notes

Acknowledgments

This work was supported by equipment grants from the Australian Research Council (ARC) and the Rowden White Foundation. M. B. is a recipient of a Swiss National Science Foundation (SNF) fellowship. We would like to thank Sébastien Morin for supplying the PSE-4 and TEM-1 data.

Supplementary material

10858_2011_9509_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2033 kb)

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the second international symposium on information theory, Budapest, Akademia Kiado, pp 267–281Google Scholar
  2. Bellomo N, Preziosi L (1994) Modelling mathematical methods and scientific computation. CRC Press, Boca RatonGoogle Scholar
  3. Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990) Deviations from the simple 2-parameter model-free approach to the interpretation of N-15 nuclear magnetic-relaxation of proteins. J Am Chem Soc 112(12):4989–4991CrossRefGoogle Scholar
  4. Cole R, Loria JP (2003) FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data. J Biomol NMR 26(3):203–213CrossRefGoogle Scholar
  5. d’Auvergne EJ, Gooley PR (2003) The use of model selection in the model-free analysis of protein dynamics. J Biomol NMR 25(1):25–39CrossRefGoogle Scholar
  6. d’Auvergne EJ, Gooley PR (2006) Model-free model elimination: a new step in the model-free dynamic analysis of NMR relaxation data. J Biomol NMR 35(2):117–135. doi:10.1007/s10858-006-9007-z CrossRefGoogle Scholar
  7. d’Auvergne EJ, Gooley PR (2007) Set theory formulation of the model-free problem and the diffusion seeded model-free paradigm. Mol Biosyst 3(7):483–494. doi:10.1039/b702202f CrossRefGoogle Scholar
  8. d’Auvergne EJ, Gooley PR (2008a) Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces. J Biomol NMR 40(2):107–119. doi:10.1007/s10858-007-9214-2 CrossRefGoogle Scholar
  9. d’Auvergne EJ, Gooley PR (2008b) Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor. J Biomol NMR 40(2):121–133. doi:10.1007/s10858-007-9213-3 CrossRefGoogle Scholar
  10. Dosset P, Hus JC, Blackledge M, Marion D (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16(1):23–28CrossRefGoogle Scholar
  11. Fisette O, Morin S, Savard PY, Lague P, Gagne SM (2010) TEM-1 backbone dynamics-insights from combined molecular dynamics and nuclear magnetic resonance. Biophys J 98(4):637–645. doi:10.1016/j.bpj.2009.08.061 CrossRefGoogle Scholar
  12. Fushman D, Cahill S, Cowburn D (1997) The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. J Mol Biol 266(1):173–194. doi:10.1006/jmbi.1996.0771 CrossRefGoogle Scholar
  13. Gitti RK, Wright NT, Margolis JW, Varney KM, Weber DJ, Margolis FL (2005) Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements. Biochemistry 44(28):9673–9679. doi:10.1021/bi050149t CrossRefGoogle Scholar
  14. Goddard TD, Kneller DG (2006) Sparky 3. University of California, San FranciscoGoogle Scholar
  15. Grant BJ, Gorfe AA, McCammon JA (2010) Large conformational changes in proteins: signaling and other functions. Curr Opin Struct Biol 20(2):142–147. doi:10.1016/j.sbi.2009.12.004 CrossRefGoogle Scholar
  16. Hall JB, Dayie KT, Fushman D (2003) Direct measurement of the 15N CSA/dipolar relaxation interference from coupled HSQC spectra. J Biomol NMR 26(2):181–186CrossRefGoogle Scholar
  17. Igumenova TI, Frederick KK, Wand AJ (2006) Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem Rev 106(5):1672–1699. doi:10.1021/cr040422h CrossRefGoogle Scholar
  18. Jarymowycz VA, Stone MJ (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106(5):1624–1671. doi:10.1021/cr040421p CrossRefGoogle Scholar
  19. Korzhnev DM, Billeter M, Arseniev AS, Orekhov VY (2001) NMR studies of Brownian tumbling and internal motions in proteins. Prog Nucl Magn Reson Spectrosc 38(3):197–266CrossRefGoogle Scholar
  20. Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules II. Analysis of experimental results. J Am Chem Soc 104(17):4559–4570CrossRefGoogle Scholar
  21. Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation of macromolecules. Theory and range of validity. J Am Chem Soc 104(17):4546–4559CrossRefGoogle Scholar
  22. Mandel AM, Akke M, Palmer AG 3rd (1995) Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol 246(1):144–163CrossRefGoogle Scholar
  23. Morin S, Gagne SM (2009) NMR dynamics of PSE-4 beta-lactamase: an interplay of ps-ns order and mus-ms motions in the active site. Biophys J 96(11):4681–4691. doi:10.1016/j.bpj.2009.02.068 CrossRefGoogle Scholar
  24. Palmer AG, Rance M, Wright PE (1991) Intramolecular Motions of a zinc finger DNA-binding domain from XFIN characterized by proton-detected natural abundance C-12 heteronuclear NMR-spectroscopy. J Am Chem Soc 113(12):4371–4380CrossRefGoogle Scholar
  25. Sapienza PJ, Lee AL (2010) Using NMR to study fast dynamics in proteins: methods and applications. Curr Opin Pharmacol 10(6):723–730. doi:10.1016/j.coph.2010.09.006 CrossRefGoogle Scholar
  26. Teilum K, Olsen JG, Kragelund BB (2009) Functional aspects of protein flexibility. Cell Mol Life Sci 66(14):2231–2247. doi:10.1007/s00018-009-0014-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael Bieri
    • 1
  • Edward J. d’Auvergne
    • 2
  • Paul R. Gooley
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyBio21 Molecular Science and Biotechnology Institute, The University of MelbourneParkvilleAustralia
  2. 2.Department of NMR-based Structural BiologyMax Planck Institute for Biophysical ChemistryGoettingenGermany

Personalised recommendations