Solution structure, dynamics and thermodynamics of the three SH3 domains of CD2AP

  • Jose L. Ortega Roldan
  • Martin Blackledge
  • Nico A. J. van NulandEmail author
  • Ana I. Azuaga


CD2 associated protein (CD2AP) is an adaptor protein that plays an important role in cell to cell union needed for the kidney function. It contains three N-terminal SH3 domains that are able to interact among others with CD2, ALIX, c-Cbl and Ubiquitin. To understand the role of the individual SH3 domains of this adaptor protein we have performed a complete structural, thermodynamic and dynamic characterization of the separate domains using NMR and DSC. The energetic contributions to the stability and the backbone dynamics have been related to the structural features of each domain using the structure-based FoldX algorithm. We have found that the N-terminal SH3 domain of both adaptor proteins CD2AP and CIN85 are the most stable SH3 domains that have been studied until now. This high stability is driven by a more extensive network of intra-molecular interactions. We believe that this increased stabilization of N-terminal SH3 domains in adaptor proteins is crucial to maintain the necessary conformation to establish the proper interactions critical for the recruitment of their natural targets.


Adaptor protein CD2AP NMR Protein structure SH3 domain 



CD2 associated protein


Dynamic light scattering


Nuclear magnetic resonance


Nuclear overhauser enhancement spectroscopy


Residual dipolar coupling


Root mean square deviation


Src-homology domain 3


Differential scanning calorimetry


Total correlation spectroscopy



This research was funded by grant BIO2005-04650 from the Spanish Ministry of Education and Science (MEC) and FQM-02838 from the Andalucia Regional Goverment. We thank Manuel Iglesias-Bexiga and Maria-Luisa Romero-Romero for initial experimental work, Malene Ringkjobing-Jensen for help with the RDC measurement, Salvador Casares and Francisco Conejero-Lara for useful discussions and Obdulio Lopez-Mayorga for his continuous support. J.L.O.R. is supported by a pos-doctoral grant from the University of Granada. The CD2AP SH3-A clone was kindly provided by Jeronimo Bravo. The 600 MHz spectra were recorded in the Centre for Scientific Instrumentation (CIC) of the University of Granada and at the RALF Large Scale Facility in Grenoble, which is funded by the ‘Access to Research Infrastructures’ program of the European Union. The CD2AP SH3-B structure calculation was carried out in the supercomputing facilities (UGRGrid) of the University of Granada.


  1. Bendsen S, Oestergaard VH, Skouboe C, Brinch M, Knudsen BR, Andersen AH (2009) The QTK loop is essential for the communication between the N-terminal ATPase domain and the central cleavage–ligation region in human topoisomerase IIalpha. Biochemistry 48(27):6508–6515. doi: 10.1021/bi9005978 CrossRefGoogle Scholar
  2. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921CrossRefGoogle Scholar
  3. Brutscher B (2001) Accurate measurement of small spin-spin couplings in partially aligned molecules using a novel J-mismatch compensated spin-state-selection filter. J Magn Reson 151(2):332–338. doi: 10.1006/jmre.2001.2375 ADSCrossRefGoogle Scholar
  4. Calvete JJ (2004) Structures of integrin domains and concerted conformational changes in the bidirectional signaling mechanism of alphaIIbbeta3. Exp Biol Med (Maywood) 229(8):732–744. doi: 229/8/732[pii] Google Scholar
  5. Casares S, Lopez-Mayorga O, Vega MC, Camara-Artigas A, Conejero-Lara F (2007) Cooperative propagation of local stability changes from low-stability and high-stability regions in a SH3 domain. Proteins 67(3):531–547. doi: 10.1002/prot.21284 CrossRefGoogle Scholar
  6. Chen S, Dumitrescu TP, Smithgall TE, Engen JR (2008) Abl N-terminal cap stabilization of SH3 domain dynamics. Biochemistry 47(21):5795–5803. doi: 10.1021/bi800446b CrossRefGoogle Scholar
  7. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  8. Dikic I (2002) CIN85/CMS family of adaptor molecules. FEBS Lett 529(1):110–115. doi: S0014579302031885[pii] CrossRefGoogle Scholar
  9. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic acids research 32 (Web Server issue):W665–W667. doi: 10.1093/nar/gkh381
  10. Dosset P, Hus JC, Blackledge M, Marion D (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16(1):23–28CrossRefGoogle Scholar
  11. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15 N NMR relaxation. Biochemistry 33(19):5984–6003CrossRefGoogle Scholar
  12. Ferreon JC, Volk DE, Luxon BA, Gorenstein DG, Hilser VJ (2003) Solution structure, dynamics, and thermodynamics of the native state ensemble of the Sem-5 C-terminal SH3 domain. Biochemistry 42(19):5582–5591. doi: 10.1021/bi030005j CrossRefGoogle Scholar
  13. Filimonov VV, Azuaga AI, Viguera AR, Serrano L, Mateo PL (1999) A thermodynamic analysis of a family of small globular proteins: SH3 domains. Biophys Chem 77(2–3):195–208CrossRefGoogle Scholar
  14. Goddard TD, Kneller DG (1993) Sparky 3, University of California, San FranciscoGoogle Scholar
  15. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320(2):369–387. doi: 10.1016/S0022-2836(02)00442-4 CrossRefGoogle Scholar
  16. Guijarro JI, Morton CJ, Plaxco KW, Campbell ID, Dobson CM (1998) Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. J Mol Biol 276(3):657–667. doi: 10.1006/jmbi.1997.1553 CrossRefGoogle Scholar
  17. Guntert P (1997) Calculating protein structures from NMR data. Methods Mol Biol 60:157–194. doi: 10.1385/0-89603-309-0:157 Google Scholar
  18. Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273(1):283–298. doi: 10.1006/jmbi.1997.1284 CrossRefGoogle Scholar
  19. Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J Biomol NMR 24(3):171–189. doi: 5111821[pii] CrossRefGoogle Scholar
  20. Hooft RW, Sander C, Vriend G (1996) Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 26(4):363–376. doi: 10.1002/(SICI)1097-0134(199612)26:4<363:AID-PROT1>3.0.CO;2-D CrossRefGoogle Scholar
  21. Horita DA, Zhang W, Smithgall TE, Gmeiner WH, Byrd RA (2000) Dynamics of the Hck-SH3 domain: comparison of experiment with multiple molecular dynamics simulations. Protein Sci 9(1):95–103. doi: 10.1110/ps.9.1.95 CrossRefGoogle Scholar
  22. Hus JC, Marion D, Blackledge M (2000) De novo determination of protein structure by NMR using orientational and long-range order restraints. J Mol Biol 298(5):927–936. doi: 10.1006/jmbi.2000.3714 CrossRefGoogle Scholar
  23. Hwang TL, Shaka AJ (1998) Multiple-pulse mixing sequences that selectively enhance chemical exchange or cross-relaxation peaks in high-resolution NMR spectra. J Magn Reson 135(2):280–287. doi: 10.1006/jmre.1998.1598 ADSCrossRefGoogle Scholar
  24. Jarymowycz VA, Stone MJ (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106(5):1624–1671. doi: 10.1021/cr040421p CrossRefGoogle Scholar
  25. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352. doi: 10.1385/1-59259-809-9:313 Google Scholar
  26. Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith CI, Ladenstein R (1998) Thermal unfolding of small proteins with SH3 domain folding pattern. Proteins 31(3):309–319. doi: 10.1002/(SICI)1097-0134(19980515)31:3<309:AID-PROT7>3.0.CO;2-D[pii] CrossRefGoogle Scholar
  27. Larson SM, Davidson AR (2000) The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Protein Sci 9(11):2170–2180. doi: 10.1110/ps.9.11.2170 CrossRefGoogle Scholar
  28. Lenaerts T, Ferkinghoff-Borg J, Stricher F, Serrano L, Schymkowitz JW, Rousseau F (2008) Quantifying information transfer by protein domains: analysis of the Fyn SH2 domain structure. BMC Struct Biol 8:43. doi: 10.1186/1472-6807-8-43 CrossRefGoogle Scholar
  29. Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187(1):163–169. doi: 10.1016/j.jmr.2007.04.002 ADSCrossRefGoogle Scholar
  30. Li SS (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390(Pt 3):641–653. doi: 10.1042/BJ20050411 Google Scholar
  31. Li C, Ruotsalainen V, Tryggvason K, Shaw AS, Miner JH (2000) CD2AP is expressed with nephrin in developing podocytes and is found widely in mature kidney and elsewhere. Am J Physiol Renal Physiol 279(4):F785–F792Google Scholar
  32. Luque I, Freire E (1998) Structure-based prediction of binding affinities and molecular design of peptide ligands. Methods Enzymol 295:100–127CrossRefGoogle Scholar
  33. Markus MA, Dayie KT, Matsudaira P, Wagner G (1996) Local mobility within villin 14T probed via heteronuclear relaxation measurements and a reduced spectral density mapping. Biochemistry 35(6):1722–1732. doi: 10.1021/bi951933o CrossRefGoogle Scholar
  34. Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114(Pt 7):1253–1263Google Scholar
  35. Moncalian G, Cardenes N, Deribe YL, Spinola-Amilibia M, Dikic I, Bravo J (2006) Atypical polyproline recognition by the CMS N-terminal Src homology 3 domain. J Biol Chem 281(50):38845–38853. doi: 10.1074/jbc.M606411200 CrossRefGoogle Scholar
  36. Morel B, Casares S, Conejero-Lara F (2006) A single mutation induces amyloid aggregation in the alpha-spectrin SH3 domain: analysis of the early stages of fibril formation. J Mol Biol 356(2):453–468. doi: 10.1016/j.jmb.2005.11.062 CrossRefGoogle Scholar
  37. Nederveen AJ, Doreleijers JF, Vranken W, Miller Z, Spronk CA, Nabuurs SB, Guntert P, Livny M, Markley JL, Nilges M, Ulrich EL, Kaptein R, Bonvin AM (2005) RECOORD: a recalculated coordinate database of 500 + proteins from the PDB using restraints from the BioMagResBank. Proteins 59(4):662–672. doi: 10.1002/prot.20408 CrossRefGoogle Scholar
  38. Ortega Roldan JL, Romero Romero ML, Ora A, Ab E, Lopez Mayorga O, Azuaga AI, van Nuland NA (2007) The high resolution NMR structure of the third SH3 domain of CD2AP. J Biomol NMR 39(4):331–336CrossRefGoogle Scholar
  39. Ortega-Roldan JL, Jensen MR, Brutscher B, Azuaga AI, Blackledge M, van Nuland NA (2009) Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex. Nucleic Acids Res 37(9):e70CrossRefGoogle Scholar
  40. Plaxco KW, Guijarro JI, Morton CJ, Pitkeathly M, Campbell ID, Dobson CM (1998) The folding kinetics and thermodynamics of the Fyn-SH3 domain. Biochemistry 37(8):2529–2537. doi: 10.1021/bi972075u CrossRefGoogle Scholar
  41. Ruckert M, Otting G (2000) Alignment of Biological Macromolecules in Novel Nonionic Liquid Crystalline Media for NMR Experiments. J Am Chem Soc 122(32):7793–7797. doi: 10.1021/ja001068h CrossRefGoogle Scholar
  42. Sadqi M, Casares S, Abril MA, Lopez-Mayorga O, Conejero-Lara F, Freire E (1999) The native state conformational ensemble of the SH3 domain from alpha-spectrin. Biochemistry 38(28):8899–8906. doi: 10.1021/bi990413g CrossRefGoogle Scholar
  43. Schanda P, Brutscher B (2006) Hadamard frequency-encoded SOFAST-HMQC for ultrafast two-dimensional protein NMR. J Magn Reson 178(2):334–339. doi: 10.1016/j.jmr.2005.10.007 ADSCrossRefGoogle Scholar
  44. Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33(4):199–211. doi: 10.1007/s10858-005-4425-x CrossRefGoogle Scholar
  45. Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128(28):9042–9043. doi: 10.1021/ja062025p CrossRefGoogle Scholar
  46. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286(5438):312–315. doi: 7865[pii] CrossRefGoogle Scholar
  47. Varela L, Morel B, Azuaga AI, Conejero-Lara F (2009) A single mutation in an SH3 domain increases amyloid aggregation by accelerating nucleation, but not by destabilizing thermodynamically the native state. FEBS Lett 583(4):801–806. doi: 10.1016/j.febslet.2009.01.033 CrossRefGoogle Scholar
  48. Viguera AR, Martinez JC, Filimonov VV, Mateo PL, Serrano L (1994) Thermodynamic and kinetic analysis of the SH3 domain of spectrin shows a two-state folding transition. Biochemistry 33(8):2142–2150CrossRefGoogle Scholar
  49. Wang C, Pawley NH, Nicholson LK (2001) The role of backbone motions in ligand binding to the c-Src SH3 domain. J Mol Biol 313(4):873–887. doi: 10.1006/jmbi.2001.5083 CrossRefGoogle Scholar
  50. Wilkins DK, Grimshaw SB, Receveur V, Dobson CM, Jones JA, Smith LJ (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry 38(50):16424–16431. doi: bi991765q[pii] CrossRefGoogle Scholar
  51. Wuthrich K (1986) NMR of proteins and nucleic acidsGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jose L. Ortega Roldan
    • 1
  • Martin Blackledge
    • 2
  • Nico A. J. van Nuland
    • 3
    • 4
    Email author
  • Ana I. Azuaga
    • 1
  1. 1.Departamento de Química Física e Instituto de Biotecnología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Protein Dynamics and Flexibility by NMRInstitut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF UMR 5075GrenobleFrance
  3. 3.Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
  4. 4.Department of Molecular and Cellular InteractionsVIBBrusselsBelgium

Personalised recommendations