Journal of Biomolecular NMR

, Volume 50, Issue 2, pp 129–136 | Cite as

Sensitive 13C–13C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields

  • Markus Weingarth
  • Yuichi Masuda
  • K. Takegoshi
  • Geoffrey Bodenhausen
  • Piotr Tekely
Article

Abstract

Sensitive 2D solid-state 13C–13C correlation spectra of amyloid β fibrils have been recorded at very fast spinning frequencies and very high magnetic fields. It is demonstrated that PARIS-xy recoupling using moderate rf amplitudes can provide structural information by promoting efficient magnetization transfer even under such challenging experimental conditions. Furthermore, it has been shown both experimentally and by numerical simulations that the method is not very sensitive to dipolar truncation effects and can reveal direct transfer across distances of about 3.5–4Å.

Keywords

Amyloid β fibrils Solid-state NMR 13C–13C 2D correlation spectra Dipolar truncation PARIS-xy dipolar recoupling Ultra-high magnetic field 

Supplementary material

10858_2011_9501_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1055 kb)

References

  1. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic amyloid-β1-42 oligomers to fibrils. Nat Struct Mol Biol 17:561–567CrossRefGoogle Scholar
  2. Bayro MJ, Maly T, Birkett NR, Dobson CM, Griffin RG (2009a) Long-range correlations between aliphatic C-13 nuclei in protein MAS NMR spectroscopy. Angew Chem Int Ed 48:5708–5710CrossRefGoogle Scholar
  3. Bayro MJ, Huber M, Ramachandran R, Davenport TC, Meier BH, Ernst M, Griffin RG (2009b) Dipolar truncation in magic-angle spinning NMR recoupling experiments. J Chem Phys 130:8Google Scholar
  4. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, DeGrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463(7281):689–U127Google Scholar
  5. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102ADSCrossRefGoogle Scholar
  6. Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y (2007) Evidence of fibril-like beta-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s beta-amyloid. Nat Struct Mol Biol 14(12):1157–1164CrossRefGoogle Scholar
  7. Grommek A, Meier BH, Ernst M (2006) Distance information from proton-driven spin diffusion under MAS. Chem Phys Lett 427:404–409ADSCrossRefGoogle Scholar
  8. Irie K, Oie K, Nakahara A, Yanai Y, Ohigashi H, Wender PA, Fukuda H, Konishi H, Kikkawa U (1998) Molecular basis for protein kinase C isozyme-selective binding: the synthesis, folding, and phorbol ester binding of the cysteine-rich domains of all protein kinase C isozymes. J Am Chem Soc 120:9159–9167CrossRefGoogle Scholar
  9. Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D Structure of amyloid protofilaments of b2-microglobulin fragment probed by solid-state NMR. Proc Natl Sci USA 103:18119–18124ADSCrossRefGoogle Scholar
  10. Laage S, Sachleben JR, Steuernagel S, Pierattelli R, Pintacuda G, Emsley L (2009) Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. J Magn Reson 196:133–141ADSCrossRefGoogle Scholar
  11. Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed 44:2089–2092CrossRefGoogle Scholar
  12. Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440(7086):959–962ADSCrossRefGoogle Scholar
  13. Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-beta (1–42) fibrils. Proc Natl Sci USA 102:17342–17347ADSCrossRefGoogle Scholar
  14. Masuda Y, Nakanishi A, Ohashi R, Takegoshi K, Shimizu T, Irie K (2008) Verification of the intermolecular parallel β-sheet in E22K-Aβ42 aggregates by solid-state NMR using rotational resonance: implications for the supramolecular arrangement of the toxic conformer of Aβ42. Bios Biotechnol Biochem 72:2170–2175CrossRefGoogle Scholar
  15. Masuda Y, Uemura S, Ohashi R, Nakanishi A, Takegoshi K, Shimizu T, Shirasawa T, Irie K (2009) Identification of physiological and toxic conformations in Aβ42 aggregates. Chem BioChem 10:287–295CrossRefGoogle Scholar
  16. Murakami K, Irie K, Morimoto A, Ohigashi H, Shindo M, Nagao M, Shimizu T, Shirasawa T (2002) Synthesis, aggregation, neurotoxicity, and secondary structure of various A beta 1-42 mutants of familial Alzheimer's disease at positions 21-23. Biochem Biophys Res Commun 294:5–10CrossRefGoogle Scholar
  17. Nielsen JT, Bjerring M, Jeppesen MD, Pedersen RO, Pedersen JM, Hein KL, Vosegaard T, Skrydstrup T, Otzen DE, Nielsen NC (2009) Unique identification of supramolecular structures in amyloid fibrils by solid-state NMR spectroscopy. Angew Chem Int Ed 48:2118–2121CrossRefGoogle Scholar
  18. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Sci USA 99(26):16742–16747ADSCrossRefGoogle Scholar
  19. Petkova AT, Leapman RD, Guo ZH, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 307:262–265ADSCrossRefGoogle Scholar
  20. Potrzebowski MJ, Tekely P, Dusausoy Y (1998) Comment to 13C NMR studies of α and γ polymorphs of glycine. Solid State NMR 11:253–257CrossRefGoogle Scholar
  21. Rienstra CM, Tucker-Kellogg L, Jaroniec CP, Hohwy M, Reif B, McMahon MT, Tidor B, Lozano-Perez T, Griffin RG (2002) De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy. Proc Natl Sci USA 99:10260–10265ADSCrossRefGoogle Scholar
  22. Scholz I, van Beek JD, Ernst M (2010) Operator-based Floquet theory in solid-state NMR. Solid State Nucl Mag Reson 37:39–59CrossRefGoogle Scholar
  23. Sperling LJ, Nieuwkoop AJ, Lipton AS, Berthold DA, Rienstra CM (2010) High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field. J Biomol NMR 46:149–155CrossRefGoogle Scholar
  24. Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39:1–55CrossRefGoogle Scholar
  25. Veshtort M, Griffin RG (2006) SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. J Magn Reson 178:248–282ADSCrossRefGoogle Scholar
  26. Weingarth M, Tekely P, Bodenhausen G (2008a) Efficient heteronuclear decoupling by quenching rotary resonance in solid-state NMR. Chem Phys Lett 466:247–251ADSCrossRefGoogle Scholar
  27. Weingarth M, Demco DE, Bodenhausen G, Tekely P (2008b) Improved magnetization transfer in solid-state NMR with fast magic angle spinning. Chem Phys Lett 469:342–348ADSCrossRefGoogle Scholar
  28. Weingarth M, Bodenhausen G, Tekely P (2009a) Broadband carbon-13 correlation spectra of microcrystalline proteins in very high magnetic fields. J Am Chem Soc 131:13937–13939CrossRefGoogle Scholar
  29. Weingarth M, Bodenhausen G, Tekely P (2009b) Low-power decoupling at high spinning frequencies in high static fields. J Magn Reson 199:238–241ADSCrossRefGoogle Scholar
  30. Weingarth M, Bodenhausen G, Tekely P (2010a) Broadband magnetization transfer using moderate radio-frequency fields for NMR with very high static fields and spinning speeds. Chem Phys Lett 488:10–16ADSCrossRefGoogle Scholar
  31. Weingarth M, Tekely P, Brüschweiler R, Bodenhausen G (2010b) Improving the quality of 2D solid-state NMR spectra of microcrystalline proteins by covariance analysis. Chem Comm 46:952–954CrossRefGoogle Scholar
  32. Weingarth M, Bodenhausen G, Tekely P (2011) Probing the quenching of rotary resonance by PISSARRO decoupling. Chem Phys Lett 502:259–265ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Markus Weingarth
    • 1
    • 2
    • 3
    • 4
  • Yuichi Masuda
    • 5
  • K. Takegoshi
    • 5
  • Geoffrey Bodenhausen
    • 1
    • 2
    • 3
  • Piotr Tekely
    • 1
    • 2
    • 3
  1. 1.Département de ChimieEcole Normale SupérieureParisFrance
  2. 2.Université Pierre et Marie CurieParisFrance
  3. 3.Département de ChimieCNRS, UMR 7203ParisFrance
  4. 4.Utrecht UniversityUtrechtThe Netherlands
  5. 5.Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations