Journal of Biomolecular NMR

, Volume 49, Issue 3–4, pp 245–254 | Cite as

1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

  • Samuel S. W. Szeto
  • Stacey N. Reinke
  • Bernard D. LemireEmail author


The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in 1H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.


Biological variance Model systems Metabolic profiling 



We thank Dr. Brian D. Sykes for the usage of the 600 MHz spectrometer. S.N.R. was supported by an AHFMR Studentship. This work is supported by Canadian Institutes of Health Research Grants MT-15336 and MT-15290 to BDL.


  1. Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21(6):692–696. doi: 10.1038/nbt823 CrossRefGoogle Scholar
  2. Bart P, Braeckman BP, Houthoofd K, Vanfleteren JR (2009) Intermediary metabolism. WormBook. doi: 10.1895/wormbook.1.146.1 Google Scholar
  3. Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, Beal MF (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131(2):389–396. doi: 10.1093/brain/awm304 CrossRefGoogle Scholar
  4. Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E (2005) NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed 18(3):143–162. doi: 10.1002/nbm.935 CrossRefGoogle Scholar
  5. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94MathSciNetGoogle Scholar
  6. Cann AJ (2003) Maths from scratch for biologists. Wiley Sons, ChichesterGoogle Scholar
  7. Carrola J, Rocha CuM, Barros AnS, Gil AM, Goodfellow BJ, Carreira IM, Bernardo Jo, Gomes A, Sousa V, Carvalho L, Duarte IF (2010) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res 10(1):221–230. doi: 10.1021/pr100899x CrossRefGoogle Scholar
  8. Cimini D, Patil K, Schiraldi C, Nielsen J (2009) Global transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3. BMC Syst Biol 3(1):17. doi: 10.1186/1752-0509-3-17 CrossRefGoogle Scholar
  9. Corder G, Foreman D (2009) Nonparametric statistics for non-statisticians: a step-by-step approach. Wiley, HobokenzbMATHCrossRefGoogle Scholar
  10. Crews B, Wikoff WR, Patti GJ, Woo HK, Kalisiak E, Heideker J, Siuzdak G (2009) Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry-based metabolomics data. Anal Chem 81(20):8538–8544. doi: 10.1021/ac9014947 CrossRefGoogle Scholar
  11. Darby C (2005) Interactions with microbial pathogens. WormBook. doi: 10.1895/wormbook.1.21.1 Google Scholar
  12. de Bono M, Bargmann CI (1998) Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94(5):679–689. doi: 10.1016/S0092-8674(00)81609-8 CrossRefGoogle Scholar
  13. de Kok J, Muller JLM, Slater EC (1975) EPR studies on the respiratory chain of wild-type Saccharomyces cerevisiae and mutants with a deficiency in succinate dehydrogenase. Biochim Biophys Acta 387:441–450. doi: 10.1016/0005-2728(75)90084-5 CrossRefGoogle Scholar
  14. Dowlatabadi R, Weljie AM, Thorpe TA, Yeung EC, Vogel HJ (2009) Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy. Plant Physiol Biochem 47(5):343–350. doi: 10.1016/j.plaphy.2008.12.023 CrossRefGoogle Scholar
  15. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186. doi: 10.1126/science.1070919 ADSCrossRefGoogle Scholar
  16. Eriksson LJE, Kettaneh-Wold N, Trygg J, Wikström C, Wold S (2001) Multi- and megavariate data analysis. Part 1: principles and applications, 2nd edn. Umetrics academy, UmeåGoogle Scholar
  17. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18(11):1157–1161. doi: 10.1038/81137 CrossRefGoogle Scholar
  18. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408(6810):325–330. doi: 10.1038/35042517 ADSCrossRefGoogle Scholar
  19. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20(6):1425CrossRefGoogle Scholar
  20. Grad LI, Sayles LC, Lemire BD (2007) Isolation and functional analysis of mitochondria from the nematode Caenorhabditis elegans. In: Leister D, Herrmann J (eds) Mitochondria: practical protocols. Humana Press, Totowa, pp 51–66Google Scholar
  21. Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134(5):714–717. doi: 10.1016/j.cell.2008.08.026 CrossRefGoogle Scholar
  22. Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, Halfvarson J, Tysk C, Schmitt-Kopplin P (2009) Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS ONE 4(7):e6386. doi: 10.1371/journal.pone.0006386 ADSCrossRefGoogle Scholar
  23. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2(1):research0002.0001–0010. doi: 10.1186/gb-2000-2-1-research0002
  24. Kang C, Avery L (2009) Systemic regulation of starvation response in Caenorhabditis elegans. Genes Dev 23(1):12–17. doi: 10.1101/gad.1723409 CrossRefGoogle Scholar
  25. Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3(7):557–565. doi: 10.1038/nrmicro1177 CrossRefGoogle Scholar
  26. Lanza IR, Zhang S, Ward LE, Karakelides H, Raftery D, Nair KS (2010) Quantitative metabolomics by 1H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS ONE 5(5):e10538ADSCrossRefGoogle Scholar
  27. Lenz EM, Bright J, Wilson ID, Morgan SR, Nash AF (2003) A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J Pharm Biomed Anal 33(5):1103–1115. doi: 10.1016/S0731-7085(03)00410-2 CrossRefGoogle Scholar
  28. Lewis JA, Fleming JT (1995) Basic culture methods. Methods Cell Biol 48:3–29CrossRefGoogle Scholar
  29. MacIntyre DA, Jiménez B, Lewintre EJ, Martin CR, Schäfer H, Ballesteros CG, Mayans JR, Spraul M, Garcia-Conde J, Pineda-Lucena A (2010) Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups. Leukemia 24(4):788–797. doi: 10.1038/leu.2009.295 CrossRefGoogle Scholar
  30. Maharjan RP, Ferenci T (2005) Metabolomic diversity in the species Escherichia coli and its relationship to genetic population structure. Metabolomics 1(3):235–242. doi: 10.1007/s11306-005-0002-2 CrossRefGoogle Scholar
  31. Mapelli V, Olsson L, Nielsen J (2008) Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends Biotechnol 26(9):490–497. doi: 10.1016/j.tibtech.2008.05.008 CrossRefGoogle Scholar
  32. Massart D, Smeyers-Verbeke J, Capron X, Schlesier K (2005) Visual presentation of data by means of box plots. LC-GC Eur 18(4):215–218Google Scholar
  33. Nicholson JK (2006) Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2:52. doi: 10.1038/msb4100095 CrossRefGoogle Scholar
  34. O’Riordan VB, Burnell AM (1989) Intermediary metabolism in the dauer larva of the nematode Caenorhabditis elegans—1. Glycolysis, gluconeogenesis, oxidative phosphorylation and the tricarboxylic acid cycle. Comp Biochem Physiol Part B: Biochem Mol Biol 92(2):233–238. doi: 10.1016/0305-0491(89)90271-X CrossRefGoogle Scholar
  35. O’Riordan VB, Burnell AM (1990) Intermediary metabolism in the dauer larva of the nematode Caenorhabditis elegans—II. The glyoxylate cycle and fatty-acid oxidation. Comp Biochem Physiol Part B: Biochem Mol Biol 95(1):125–130. doi: 10.1016/0305-0491(90)90258-U CrossRefGoogle Scholar
  36. Oyedotun KS, Lemire BD (1997) The carboxyl terminus of the Saccharomyces cerevisiae succinate dehydrogenase membrane subunit, Sdh4p, is necessary for ubiquinone reduction and enzyme stability. J Biol Chem 272(50):31382–31388. doi: 10.1074/jbc.272.50.31382 CrossRefGoogle Scholar
  37. Oyedotun KS, Lemire BD (1999) The Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase. Identification of Sdh3p amino acid residues involved in ubiquinone binding. J Biol Chem 274(34):23956–23962. doi: 10.1074/jbc.274.34.23956 CrossRefGoogle Scholar
  38. Parsons HM, Ekman DR, Collette TW, Viant MR (2009) Spectral relative standard deviation: a practical benchmark in metabolomics. Analyst 134(3):478–485. doi: 10.1039/b808986h ADSCrossRefGoogle Scholar
  39. Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19(1):45–50. doi: 10.1038/83496 CrossRefGoogle Scholar
  40. Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309(5743):2010–2013. doi: 10.1126/science.1105891 ADSCrossRefGoogle Scholar
  41. Reinke SN, Hu X, Sykes BD, Lemire BD (2010) Caenorhabditis elegans diet significantly affects metabolic profile, mitochondrial DNA levels, lifespan and brood size. Mol Genet Metab 100(3):274–282. doi: 10.1016/j.ymgme.2010.03.013 CrossRefGoogle Scholar
  42. Saude E, Adamko D, Rowe B, Marrie T, Sykes B (2007) Variation of metabolites in normal human urine. Metabolomics 3(4):439–451. doi: 10.1007/s11306-007-0091-1 CrossRefGoogle Scholar
  43. Shaham O, Slate NG, Goldberger O, Xu Q, Ramanathan A, Souza AL, Clish CB, Sims KB, Mootha VK (2010) A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc Natl Acad Sci USA 107(4):1571–1575. doi: 10.1073/pnas.0906039107 ADSCrossRefGoogle Scholar
  44. Solanky KS, Bailey NJ, Beckwith-Hall BM, Davis A, Bingham S, Holmes E, Nicholson JK, Cassidy A (2003) Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem 323(2):197–204. doi: 10.1016/j.ab.2003.08.028 CrossRefGoogle Scholar
  45. Szeto SS, Reinke SN, Sykes BD, Lemire BD (2007) Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate. J Biol Chem 282(37):27518–27526. doi: 10.1074/jbc.M700601200 CrossRefGoogle Scholar
  46. Szeto SS, Reinke SN, Sykes BD, Lemire BD (2010) Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through 1H NMR-based metabolic footprinting. J Proteome Res 9(12):6729–6739. doi: 10.1021/pr100880y CrossRefGoogle Scholar
  47. Walsh MC, Nugent A, Brennan L, Gibney MJ (2008) Understanding the metabolome–challenges for metabolomics. Nutrition Bulletin 33(4):316–323. doi: 10.1111/j.1467-3010.2008.00732.x CrossRefGoogle Scholar
  48. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H-NMR metabolomics data. Anal Chem 78(13):4430–4442. doi: 10.1021/ac060209g CrossRefGoogle Scholar
  49. Zira AN, Theocharis SE, Mitropoulos D, Migdalis V, Mikros E (2010) 1H NMR metabonomic analysis in renal cell carcinoma: a possible diagnostic tool. J Proteome Res 9(8):4038–4044. doi: 10.1021/pr100226m CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Samuel S. W. Szeto
    • 1
  • Stacey N. Reinke
    • 1
  • Bernard D. Lemire
    • 1
    Email author
  1. 1.Department of Biochemistry, School of Molecular and Systems MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations