Advertisement

Journal of Biomolecular NMR

, Volume 49, Issue 3–4, pp 195–206 | Cite as

NMR-based metabolomics of mammalian cell and tissue cultures

  • Nelly Aranibar
  • Michael Borys
  • Nancy A. Mackin
  • Van Ly
  • Nicholas Abu-Absi
  • Susan Abu-Absi
  • Matthias Niemitz
  • Bernhard Schilling
  • Zheng Jian Li
  • Barry Brock
  • Reb J. RussellII
  • Adrienne Tymiak
  • Michael D. ReilyEmail author
Article

Abstract

NMR spectroscopy was used to evaluate growth media and the cellular metabolome in two systems of interest to biomedical research. The first of these was a Chinese hamster ovary cell line engineered to express a recombinant protein. Here, NMR spectroscopy and a quantum mechanical total line shape analysis were utilized to quantify 30 metabolites such as amino acids, Krebs cycle intermediates, activated sugars, cofactors, and others in both media and cell extracts. The impact of bioreactor scale and addition of anti-apoptotic agents to the media on the extracellular and intracellular metabolome indicated changes in metabolic pathways of energy utilization. These results shed light into culture parameters that can be manipulated to optimize growth and protein production. Second, metabolomic analysis was performed on the superfusion media in a common model used for drug metabolism and toxicology studies, in vitro liver slices. In this study, it is demonstrated that two of the 48 standard media components, choline and histidine are depleted at a faster rate than many other nutrients. Augmenting the starting media with extra choline and histidine improves the long-term liver slice viability as measured by higher tissues levels of lactate dehydrogenase (LDH), glutathione and ATP, as well as lower LDH levels in the media at time points out to 94 h after initiation of incubation. In both models, media components and cellular metabolites are measured over time and correlated with currently accepted endpoint measures.

Keywords

Metabolomics NMR Liver slice CHO cell Bioreactor Bioprocess 

References

  1. Adams MA, Chen Z, Landman P, Colmer TD (1999) Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Anal Biochem 266:77–84CrossRefGoogle Scholar
  2. Altamirano C, Illanes A, Becerra S, Cairo JJ, Godia F (2006) Considerations on the lactate consumption by CHO cells in the presence of galactose. J Biotechnol 125:547–556CrossRefGoogle Scholar
  3. Bradley SA, Ouyang A, Purdie J, Smitka TA, Wang T, Kaerner A (2010) Fermentanomics: monitoring mammalian cell cultures with NMR spectroscopy. J Am Chem Soc 132:9531–9533CrossRefGoogle Scholar
  4. Chong WPK, Goh LT, Reddy SG, Yusufi FNK, Lee DY, Wong NSC, Heng CK, Yap MGS, Ho YS (2009) Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster ovary fed-batch culture. Rapid Commun Mass Spectrom 23:3763–3771CrossRefGoogle Scholar
  5. Chong WPK, Reddy SG, Yusufi FNK, Lee DY, Wong NSC, Heng CK, Yap MGS, Ho YS (2010) Metabolomics-driven approach for the improvement of Chinese hamster ovary cell growth: overexpression of malate dehydrogenase II. J Biotechnol 147:116–121CrossRefGoogle Scholar
  6. Chrysanthopoulos PK, Goudar CT, Klapa MI (2010) Metabolomics for high-resolution monitoring of the cellular physiological state in cell culture engineering. Metab Eng 12:212–222CrossRefGoogle Scholar
  7. Cuperlovic-Culf M, Barnett DA, Culf AS, Chute I (2010) Cell culture metabolomics: applications and future directions. Drug Discov Tod 15:610–621CrossRefGoogle Scholar
  8. Dee KU, Shuler ML, Wood HA (1997) Inducing single-cell suspension of BTI-TN5B1–4 insect cells: I. The use of sulfated polyanions to prevent cell aggregation and enhance recombinant protein production. Biotechnol Bioeng 54:191–205CrossRefGoogle Scholar
  9. Dunn WB, Brown M, Worton SA, Crocker IP, Broadhurst D, Horgan R, Kenny LC, Baker PN, Kell DB, Heazell AEP (2009) Changes in the metabolic footprint of placental explant-conditioned culture medium identifies metabolic disturbances related to hypoxia and pre-eclampsia. Placenta 30:974–980CrossRefGoogle Scholar
  10. Frey PA (1996) The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J 10:461–470Google Scholar
  11. Goldin RD, Ratnayaka ID, Breach CS, Brown IN, Wickramasinghe SN (1996) Role of macrophages in acetaminophen (paracetamol)-induced hepatotoxicity. J Pathol 179:432–435CrossRefGoogle Scholar
  12. Gomez-Lechon MJ, Lahoz A, Gombau L, Castell JV, Donato MT (2010) In Vitro evaluation of potential hepatotoxicity induced by drugs. Curr Pharm Des 16:1963–1977CrossRefGoogle Scholar
  13. Hu W-S, Aunins JG (1997) Large-scale mammalian cell culture. Curr Opin Biotechnol 8:148–153CrossRefGoogle Scholar
  14. Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD (2009) Analytical and statistical approaches to metabolomics research. J Sep Sci 32:2183–2199CrossRefGoogle Scholar
  15. Jellum E, Kvittingen EA, Stokke O (1988) Mass spectrometry in diagnosis of metabolic disorders. Biomed Environ Mass Spectrom 16:57–62CrossRefGoogle Scholar
  16. Laatikainen R, Niemitz M, Weber U, Sundelin J, Hassinen T, Vepsäläinen J (1996) General Strategies for total-lineshape-type spectral analysis of NMR spectra using integral-transform iterator. J Magn Reson Ser A 120:1–10CrossRefGoogle Scholar
  17. Laskin DL, Pilaro AM (1986) Potential role of activated macrophages in acetaminophen hepatotoxicity. I. Isolation and characterization of activated macrophages from rat liver. Toxicol Appl Pharmacol 86:204–215CrossRefGoogle Scholar
  18. Laskin DL, Pilaro AM, Ji S (1986) Potential role of activated macrophages in acetaminophen hepatotoxicity. II. Mechanism of macrophage accumulation and activation. Toxicol Appl Pharmacol 86:216–226CrossRefGoogle Scholar
  19. Lerche-Langrand C, Toutain HJ (2000) Precision-cut liver slices: characteristics and use for in vitro pharmaco-toxicology. Toxicology 153:221–253CrossRefGoogle Scholar
  20. Lim Y, Wong NSC, Lee YY, Ku SCY, Wong DCF, Yap MGS (2010) Engineering mammalian cells in bioprocessing—current achievements and future perspectives. Biotechnol Appl Biochem 55:175–189CrossRefGoogle Scholar
  21. Lindon JC, Nicholson JK, Everett JR (1999) NMR spectroscopy of biofluids. Ann Rep NMR Spect 38:1–88CrossRefGoogle Scholar
  22. Moore A, Mercer J, Dutina G, Donahue CJ, Bauer KD, Mather JP, Etcheverry T, Ryll T (1997) Effects of temperature shift on cell cycle, apoptosis and nucleotide pools in CHO cell batch cultures. Cytotechnology 23:47–54CrossRefGoogle Scholar
  23. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Review 28 refs. Xenobiotica 29:1181–1189CrossRefGoogle Scholar
  24. Olinga P, Merema MT, De Jager MH, Derks F, Melgert BN, Moshage H, Slooff MJH, Meijer DKF, Poelstra K, Groothuis GMM (2001) Rat liver slices as a tool to study LPS-induced inflammatory response in the liver. J Hepatol 35:187–194CrossRefGoogle Scholar
  25. Pauling L, Robinson AB, Teranishi R, Cary P (1971) Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA 68:2374–2376ADSCrossRefGoogle Scholar
  26. Reily MD, Robosky LC, Manning ML, Butler A, Baker JD, Winters RT (2006) DFTMP, an NMR reagent for assessing the near-neutral pH of biological samples. J Am Chem Soc 128:12360–12361CrossRefGoogle Scholar
  27. Robertson DG, Reily MD, Baker JD (2007) Metabonomics in pharmaceutical discovery and development. J Proteome Res 6:526–539CrossRefGoogle Scholar
  28. Sauter H, Lauer M, Fritsch H (1991) Metabolic profiling of plants—a new diagnostic technique. ACS Symp Ser 443:288–299CrossRefGoogle Scholar
  29. Seagle C, Christie MA, Winnike JH, McClelland RE, Ludlow JW, O’Connell TM, Gamcsik MP, Macdonald JM (2008) High-throughput nuclear magnetic resonance metabolomic footprinting for tissue engineering. Tissue Eng Part C Methods 14:107–118CrossRefGoogle Scholar
  30. Trethewey RN, Krotzky AJ, Willmitzer L (1999) Commentary. Metabolic profiling: a Rosetta stone for genomics? Curr Opin Plant Biol 2:83–85CrossRefGoogle Scholar
  31. Zanghi JA, Renner WA, Bailey JE, Fussenegger M (2000) The growth factor inhibitor suramin reduces apoptosis and cell aggregation in protein-free CHO cell batch cultures. Biotechnol Prog 16:319–325CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nelly Aranibar
    • 4
  • Michael Borys
    • 1
  • Nancy A. Mackin
    • 1
  • Van Ly
    • 4
  • Nicholas Abu-Absi
    • 1
  • Susan Abu-Absi
    • 1
  • Matthias Niemitz
    • 3
  • Bernhard Schilling
    • 1
  • Zheng Jian Li
    • 1
  • Barry Brock
    • 4
  • Reb J. RussellII
    • 2
  • Adrienne Tymiak
    • 4
  • Michael D. Reily
    • 4
    Email author
  1. 1.Bristol-Myers Squibb CompanySyracuseUSA
  2. 2.Bristol-Myers Squibb CompanyPenningtonUSA
  3. 3.PERCH Solutions Ltd.KuopioFinland
  4. 4.Bristol-Myers Squibb CompanyPrincetonUSA

Personalised recommendations