Journal of Biomolecular NMR

, Volume 49, Issue 1, pp 9–15 | Cite as

Recovering lost magnetization: polarization enhancement in biomolecular NMR

Communication

Abstract

Experimental sensitivity remains a major drawback for the application of NMR spectroscopy to fragile and low concentrated biomolecular samples. Here we describe an efficient polarization enhancement mechanism in longitudinal-relaxation enhanced fast-pulsing triple-resonance experiments. By recovering undetectable 1H polarization originating from longitudinal relaxation during the pulse sequence, the steady-state 15N polarization becomes enhanced by up to a factor of ~5 with respect to thermal equilibrium yielding significant sensitivity improvements compared to conventional schemes. The benefits of BEST-TROSY experiments at high magnetic field strength are illustrated for various protein applications, but they will be equally useful for other protonated macromolecular systems.

Keywords

BEST Fast NMR Longitudinal-relaxation enhancement Protein Sensitivity TROSY 

Supplementary material

10858_2010_9461_MOESM1_ESM.pdf (299 kb)
Supplementary material 1 (pdf 299 kb)

References

  1. Brutscher B (2000) Principles and applications of cross-correlated relaxation in biomolecules. Concepts Magn Reson 12(4):207–229CrossRefGoogle Scholar
  2. Brutscher B, Boisbouvier J, Pardi A, Marion D, Simorre JP (1998) Improved sensitivity and resolution in H-1-C-13 NMR experiments of RNA. J Am Chem Soc 120(46):11845–11851CrossRefGoogle Scholar
  3. Cordier F, Grzesiek S (1999) Direct observation of hydrogen bonds in proteins by interresidue (3 h)J(NC′) scalar couplings. J Am Chem Soc 121(7):1601–1602CrossRefGoogle Scholar
  4. Farjon J, Boisbouvier J, Schanda P, Pardi A, Simorre JP, Brutscher B (2009) Longitudinal relaxation enhanced NMR experiments for the study of nucleic acids in solution. J Am Chem Soc 131:8571–8577CrossRefGoogle Scholar
  5. Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141Google Scholar
  6. Kupce E, Freeman R (1994) Wide-band excitation with polychromatic pulses. J Magn Reson A 108(2):268–273CrossRefGoogle Scholar
  7. Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187(1):163–169CrossRefADSGoogle Scholar
  8. Lescop E, Kern T, Brutscher B (2010) Guidelines for the use of band-selective radiofrequency pulses in hetero-nuclear NMR: example of longitudinal-relaxation-enhanced BEST-type H-1-N-15 correlation experiments. J Magn Reson 203(1):190–198CrossRefADSGoogle Scholar
  9. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371CrossRefADSGoogle Scholar
  10. Pervushin K, Riek R, Wider G, Wüthrich K (1998) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in C-13-labeled proteins. J Am Chem Soc 120(25):6394–6400CrossRefGoogle Scholar
  11. Pervushin K, Vögeli B, Eletsky A (2002) Longitudinal H-1 relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124(43):12898–12902CrossRefGoogle Scholar
  12. Riek R (2001) Enhancement of the steady-state magnetization in TROSY experiments. J Biomol NMR 21(2):99–105CrossRefGoogle Scholar
  13. Schanda P (2009) Fast-pulsing longitudinal relaxation optimized techniques: enriching the toolbox of fast biomolecular NMR spectroscopy. Prog NMR Spectrosc 55(3):238–265CrossRefGoogle Scholar
  14. Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127(22):8014–8015CrossRefGoogle Scholar
  15. Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33(4):199–211CrossRefGoogle Scholar
  16. Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128(28):9042–9043CrossRefGoogle Scholar
  17. Schulte-Herbrüggen T, Sorensen OW (2000) Clean TROSY: compensation for relaxation-induced artifacts. J Magn Reson 144(1):123–128CrossRefADSGoogle Scholar
  18. Yao LS, Grishaev A, Cornilescu G, Bax A (2010a) Site-specific backbone amide N-15 chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements. J Am Chem Soc 132(12):4295–4309CrossRefGoogle Scholar
  19. Yao LS, Grishaev A, Cornilescu G, Bax A (2010b) The impact of hydrogen bonding on amide H-1 chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy. J Am Chem Soc 132(31):10866–10875CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.IBS, Institut de Biologie Structurale Jean-Pierre EbelGrenobleFrance
  2. 2.CEAGrenobleFrance
  3. 3.CNRSGrenobleFrance
  4. 4.Université Joseph FourierGrenobleFrance

Personalised recommendations