Journal of Biomolecular NMR

, Volume 48, Issue 2, pp 103–111

High resolution 13C-detected solid-state NMR spectroscopy of a deuterated protein

  • Ming Tang
  • Gemma Comellas
  • Leonard J. Mueller
  • Chad M. Rienstra


High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13C′, 13Cα and 13Cβ sites are resolved in 13C–13C and 15N–13C spectra, with significant improvement in T2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates that 13T2′ times increase by almost a factor of two upon deuteration at all spinning rates and under moderate decoupling strength, and thus the deuteration enables application of scalar-based correlation experiments that are challenging from the standpoint of transverse relaxation, with moderate proton decoupling. Additionally, deuteration in large proteins is a useful strategy to selectively detect polar residues that are often important for protein function and protein–protein interactions.


Deuterated protein Solid-state NMR 13C-detected spectra Deuterium effect T2′ relaxation rates 

Abbreviations used


Dipolar assisted rotational resonance


The beta-1 immunoglobulin binding domain of protein G


Magic-angle spinning


Solid-state nuclear magnetic resonance


Constant time uniform-sign cross-peak correlation spectroscopy


In-phase anti-phase


  1. Agarwal V, Diehl A, Skrynnikov N, Reif B (2006) High resolution 1H detected 1H, 13C correlation spectra in MAS solid-state NMR using deuterated proteins with selective 1H, 2H isotopic labeling of methyl groups. J Am Chem Soc 128(39):12620–12621CrossRefGoogle Scholar
  2. Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95(6):1197–1207ADSGoogle Scholar
  3. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103(16):6951–6958CrossRefADSGoogle Scholar
  4. Bermel W, Bertini I, Duma L, Felli IC, Emsley L, Pierattelli R, Vasos PR (2005) Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew Chem Int Ed 44(20):3089–3092CrossRefGoogle Scholar
  5. Chen LL, Olsen RA, Elliott DW, Boettcher JM, Zhou DH, Rienstra CM, Mueller LJ (2006) Constant-time through-bond 13C correlation spectroscopy for assigning protein resonances with solid-state NMR spectroscopy. J Am Chem Soc 128(31):9992–9993CrossRefGoogle Scholar
  6. Chen LL, Kaiser JM, Lai JF, Polenova T, Yang J, Rienstra CM, Mueller LJ (2007) J-based 2D homonuclear and heteronuclear correlation in solid-state proteins. Magn Reson Chem 45:S84–S92CrossRefGoogle Scholar
  7. De Paepe G, Giraud N, Lesage A, Hodgkinson P, Bockmann A, Emsley L (2003) Transverse dephasing optimized solid-state NMR spectroscopy. J Am Chem Soc 125(46):13938–13939CrossRefGoogle Scholar
  8. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe: a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6(3):277–293CrossRefGoogle Scholar
  9. Detken A, Hardy EH, Ernst M, Kainosho M, Kawakami T, Aimoto S, Meier BH (2001) Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: quantification and application to antamanide. J Biomol NMR 20(3):203–221CrossRefGoogle Scholar
  10. Detken A, Hardy EH, Ernst M, Meier BH (2002) Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme. Chem Phys Lett 356(3–4):298–304CrossRefADSGoogle Scholar
  11. Ernst M, Samoson A, Meier BH (2003) Low-power XiX decoupling in MAS NMR experiments. J Magn Reson 163(2):332–339CrossRefADSGoogle Scholar
  12. Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta-1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127(35):12291–12305CrossRefGoogle Scholar
  13. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142(1):97–101CrossRefADSGoogle Scholar
  14. Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406CrossRefGoogle Scholar
  15. Hahn EL (1950) Spin echoes. Phys Rev 80(4):580–594MATHCrossRefADSGoogle Scholar
  16. Hologne M, Chevelkov V, Reif B (2006) Deuterated peptides and proteins in MAS solid-state NMR. Prog Nucl Mag Res Sp 48:211–232CrossRefGoogle Scholar
  17. Kotecha M, Wickramasinghe NP, Ishii Y (2007) Efficient low-power heteronuclear decoupling in 13C high-resolution solid-state NMR under fast magic angle spinning. Magn Reson Chem 45(S1):S221–S230CrossRefGoogle Scholar
  18. Lesage A, Bardet M, Emsley L (1999) Through-bond carbon-carbon connectivities in disordered solids by NMR. J Am Chem Soc 121(47):10987–10993CrossRefGoogle Scholar
  19. Li Y, Wylie BJ, Rienstra CM (2006) Selective refocusing pulses in magic-angle spinning NMR: characterization and applications to multi-dimensional protein spectroscopy. J Magn Reson 179(2):206–216CrossRefADSGoogle Scholar
  20. Linser R, Fink U, Reif B (2008) Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J Magn Reson 193(1):89–93CrossRefADSGoogle Scholar
  21. Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162(2):479–486CrossRefADSGoogle Scholar
  22. Morcombe CR, Gaponenko V, Byrd RA, Zilm KW (2005) 13C CPMAS spectroscopy of deuterated proteins: CP dynamics, line shapes, and T 1 relaxation. J Am Chem Soc 127(1):397–404CrossRefGoogle Scholar
  23. Paulson EK, Morcombe CR, Gaponenko V, Dancheck B, Byrd RA, Zilm KW (2003) High-sensitivity observation of dipolar exchange and NOEs between exchangeable protons in proteins by 3D solid-state NMR spectroscopy. J Am Chem Soc 125(47):14222–14223CrossRefGoogle Scholar
  24. Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling—waltz-16. J Magn Reson 52(2):335–338Google Scholar
  25. Stringer JA, Bronnimann CE, Mullen CG, Zhou DHH, Stellfox SA, Li Y, Williams EH, Rienstra CM (2005) Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes. J Magn Reson 173(1):40–48CrossRefADSGoogle Scholar
  26. Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5–6):631–637CrossRefADSGoogle Scholar
  27. Varga K, Aslimovska L, Parrot I, Dauvergne M-T, Haertlein M, Forsyth VT, Watts A (2007) NMR crystallography: the effect of deuteration on high resolution 13C solid state NMR spectra of a 7-TM protein. Biochim Biophys Acta 1768:3029–3035CrossRefGoogle Scholar
  28. Venters RA, Farmer BT 2nd, Fierke CA, Spicer LD (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J Mol Biol 264(5):1101–1116CrossRefGoogle Scholar
  29. Vijayan V, Demers JP, Biernat J, Mandelkow E, Becker S, Lange A (2009) Low-power solid-state NMR experiments for resonance assignment under fast magic-angle spinning. ChemPhysChem (published online Jul 14)Google Scholar
  30. Wickramasinghe NP, Parthasarathy S, Jones CR, Bhardwaj C, Long F, Kotecha M, Mehboob S, Fung LWM, Past J, Samoson A, Ishii Y (2009) Nanomole-scale protein solid-state NMR by breaking intrinsic 1H T 1 boundaries. Nat Methods 6(3):215–218CrossRefGoogle Scholar
  31. Zhou DH, Rienstra CM (2008) Rapid analysis of organic compounds by proton-detected heteronuclear correlation NMR spectroscopy at 40 kHz magic-angle spinning. Angew Chem Int Ed 47:7328–7331CrossRefGoogle Scholar
  32. Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle spinning NMR spectroscopy. Angew Chem Int Ed 46(44):8380–8383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ming Tang
    • 1
  • Gemma Comellas
    • 2
  • Leonard J. Mueller
    • 4
  • Chad M. Rienstra
    • 1
    • 2
    • 3
  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Center for Biophysics and Computational BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of BiochemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of ChemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations