Advertisement

Journal of Biomolecular NMR

, Volume 47, Issue 3, pp 237–241 | Cite as

The NMR structure of the autophagy-related protein Atg8

  • Hiroyuki Kumeta
  • Masahiro Watanabe
  • Hitoshi Nakatogawa
  • Masaya Yamaguchi
  • Kenji Ogura
  • Wakana Adachi
  • Yuko Fujioka
  • Nobuo N. Noda
  • Yoshinori Ohsumi
  • Fuyuhiko Inagaki
NMR Structure Note

Biological context

Autophagy is the process through which the bulk degradation of cytoplasmic components by the lysosomal/vacuolar system occurs in response to starvation conditions (Nakatogawa et al. 2009). In autophagy, a double-membrane structure called an autophagosome sequesters a portion of the cytoplasm and fuses with the lysosome/vacuole to deliver its contents into the organelle lumen. Recently, autophagy was found to have a crucial function in numerous biological processes including differentiation, antigen presentation and aging, and its dysfunction causes severe diseases such as neurodegeneration (Mizushima 2007).

Atg8 is a ubiquitin like protein, and plays an essential role for autophagosome formation in Saccharomyces cerevisiae. Atg8 is unique in that it is conjugated to the lipid phosphatidylethanolamine (PE) by a ubiquitin-like system, called the Atg8 system. In the Atg8 system, nascent Atg8 is cleaved at its C-terminal arginine residue by Atg4, a cysteine protease...

Keywords

Closed Conformation Autophagic Activity Aromatic Side Chain PreScission Protease Dihedral Angle Restraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bavro VN, Sola M, Bracher A, Kneussel M, Betz H, Weissenhorn W (2002) Crystal structure of the GABA(A)-receptor-associated protein, GABARAP. EMBO Rep. 3:183–189CrossRefGoogle Scholar
  2. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302CrossRefGoogle Scholar
  3. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  4. Goddard TD, Kneller DG (1997) SPARKY 3, University of California, San Francisco. http://www.cgl.ucsf.edu/home/sparky/
  5. Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227CrossRefGoogle Scholar
  6. Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y (2004) In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem 279:40584–40592Google Scholar
  7. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Muzushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276CrossRefGoogle Scholar
  8. Koopmann R, Muhammad K, Perbandt M, Betzel C, Duszenko M (2009) Trypanosoma brucei ATG8: Structural insights into autophagic-like mechanisms in protozoa. Autophgy 5:1085–1091CrossRefGoogle Scholar
  9. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873CrossRefGoogle Scholar
  10. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178CrossRefGoogle Scholar
  11. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467CrossRefGoogle Scholar
  12. Noda T, Matsuura A, Wada Y, Ohsumi Y (1995) Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 210:126–132CrossRefGoogle Scholar
  13. Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–1218CrossRefGoogle Scholar
  14. Noda NN, Ohsumi Y, Inagaki F (2009) ATG systems from the protein structural point of view. Chem Rev 109:1587–1598CrossRefGoogle Scholar
  15. Paz Y, Elazar Z, Fass D (2000) Structure of GATE-16, membrane transport modulator and mammalian ortholog of auphagocytosis factor Aut7p. J Biol Chem 275:25445–25450CrossRefGoogle Scholar
  16. Schwarten M, Stoldt M, Mohrlüder J, Willbold D (2009) Sequence-specific 1H, 13C, and 15N resonance assignment of the autophagy-related protein Atg8. Biomol NMR Assign 3:137–139CrossRefGoogle Scholar
  17. Stangler T, Mayr LM, Willbold D (2002) Solution structure of human GABA(A) receptor-associated protein GABARAP: implications for biological function and its regulation. J Biol Chem 277:13363–13366CrossRefGoogle Scholar
  18. Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F (2004) The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9:611–618CrossRefGoogle Scholar
  19. Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H, Fujioka Y, Ohsumi Y, Inagaki F (2007) The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem 282:8036–8043CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hiroyuki Kumeta
    • 1
  • Masahiro Watanabe
    • 1
  • Hitoshi Nakatogawa
    • 2
    • 3
  • Masaya Yamaguchi
    • 1
  • Kenji Ogura
    • 1
  • Wakana Adachi
    • 1
  • Yuko Fujioka
    • 1
  • Nobuo N. Noda
    • 1
  • Yoshinori Ohsumi
    • 2
  • Fuyuhiko Inagaki
    • 1
  1. 1.Laboratory of Structural Biology, Graduate School of Pharmaceutical SciencesHokkaido UniversityKita-kuJapan
  2. 2.Integrated Research InstituteTokyo Institute of TechnologyYokohamaJapan
  3. 3.PRESTO, Japan Science and Technology AgencySaitamaJapan

Personalised recommendations