Journal of Biomolecular NMR

, Volume 47, Issue 2, pp 155–162 | Cite as

Comparison of fast backbone dynamics at amide nitrogen and carbonyl sites in dematin headpiece C-terminal domain and its S74E mutant

  • Liliya Vugmeyster
  • Dmitry Ostrovsky
  • Ying Li


We perform a detailed comparison of fast backbone dynamics probed at amide nitrogen versus carbonyl carbon sites for dematin headpiece C-terminal domain (DHP) and its S74E mutant (DHPS74E). Carbonyl dynamics is probed via auto-correlated longitudinal rates and transverse C′/C′-Cα CSA/dipolar and C′/C′–N CSA/dipolar cross-correlated rates, while 15N data are taken from a previous study. Resulting values of effective order parameters and internal correlation times support the conclusion that C′ relaxation reports on a different subset of fast motions compared to those probed at N–H bond vectors in the same peptide planes. 13C′ order parameters are on the average 0.08 lower than 15N order parameters with the exception of the flexible loop region in DHP. The reduction of mobility in the loop region upon the S74E mutation can be seen from the 15N order parameters but not from the 13C order parameters. Internal correlation times at 13C′ sites are on the average an order of magnitude longer than those at 15N sites for the well-structured C-terminal subdomains, while the more flexible N-terminal subdomains have more comparable average internal correlation times.


Dematin headpiece NMR relaxation Backbone dynamics Carbonyl dynamics Fast motions Model-free 



We are indebted to Prof. C. James McKnight for providing the protein samples and to Prof. Arthur G. Palmer for providing spectrometer time. We are grateful to Prof. Erik Zuiderweg for an access to the COMFORD program and to Dr. Philippe Pelupessy for the guidance on the cross-correlated relaxation pulse sequences. LV acknowledges University of Alaska funds 104110-11970&11470.

Supplementary material

10858_2010_9417_MOESM1_ESM.pdf (90 kb)
(PDF 90 kb)


  1. Boyd J, Hommel U, Krishnan VV (1991) Influence of cross-correlation between dipolar and chemical-shift anisotropy relaxation mechanisms upon the transverse relaxation rates of N-15 in macromolecules. Chem Phys Lett 187:317–324CrossRefADSGoogle Scholar
  2. Bremi T, Bruschweiler R (1997) Locally anisotropic internal polypeptide backbone dynamics by NMR relaxation. J Am Chem Soc 119:6672–6673CrossRefGoogle Scholar
  3. Brutscher B (2000) Principles and applications of cross-correlated relaxation in biomolecules. Concepts Magn Reson 12:207–229CrossRefGoogle Scholar
  4. Brutscher B, Skrynnikov NR, Bremi T, Bruschweiler R, Ernst RR (1998) Quantitative investigation of dipole-CSA cross-correlated relaxation by ZQ/DQ spectroscopy. J Magn Reson 130:346–351CrossRefADSGoogle Scholar
  5. Chang SL, Tjandra N (2005) Temperature dependence of protein backbone motion from carbonyl C-13 and amide N-15 NMR relaxation. J Magn Reson 174:43–53CrossRefADSGoogle Scholar
  6. Cisnetti F, Loth K, Pelupessy P, Bodenhausen G (2004) Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR. Chemphyschem 5:807–814CrossRefGoogle Scholar
  7. Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990) Deviations from the simple 2-parameter model-free approach to the interpretation of N-15 nuclear magnetic-relaxation of proteins. J Am Chem Soc 112:4989–4991CrossRefGoogle Scholar
  8. Cole R, Loria JP (2003) FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data. J Biomol NMR 26:203–213CrossRefGoogle Scholar
  9. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  10. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121CrossRefADSGoogle Scholar
  11. Engelke J, Ruterjans H (1997) Backbone dynamics of proteins derived from carbonyl carbon relaxation times at 500, 600 and 800 MHz: application to ribonuclease T1. J Biomol NMR 9:63–78CrossRefGoogle Scholar
  12. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15 N NMR relaxation. Biochemistry 33:5984–6003CrossRefGoogle Scholar
  13. Findeisen M, Brand T, Berger S (2007) A H-1-NMR thermometer suitable for cryoprobes. Magn Reson Chem 45:175–178CrossRefGoogle Scholar
  14. Fischer MWF, Majumdar A, Zuiderweg ERP (1998) Protein NMR relaxation: theory, applications and outlook. Prog Nucl Magn Reson Spectrosc 33:207–272CrossRefGoogle Scholar
  15. Frank BS, Vardar D, Chishti AH, McKnight CJ (2004) The NMR structure of dematin headpiece reveals a dynamic loop that is conformationally altered upon phosphorylation at a distal site. J Biol Chem 279:7909–7916CrossRefGoogle Scholar
  16. Gardino AK, Kern D (2007) Functional dynamics of response regulators using NMR relaxation techniques. Methods Enzymol 423:149–156CrossRefGoogle Scholar
  17. Goldman M (1984) Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei. J Magn Reson 60:437–452Google Scholar
  18. Gu ZT, Zambrano R, McDermott A (1994) Hydrogen-bonding of carboxyl groups in solid-state amino-acids and peptides—comparison of carbon chemical shielding, infrared frequencies, and structures. J Am Chem Soc 116:6368–6372CrossRefGoogle Scholar
  19. Jiang ZG, McKnight CJ (2006) A phosphorylation-induced conformation change in dematin headpiece. Structure 14:379–387CrossRefGoogle Scholar
  20. Kay LE, Ikura M, Tschudin R, Bax A (1990) 3-dimensional triple-resonance NMR-spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514Google Scholar
  21. Kim AC, Azim AC, Chishti AH (1998) Alternative splicing and structure of the human erythroid dematin gene. Biochim Biophys Acta 1398:382–386Google Scholar
  22. Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55CrossRefGoogle Scholar
  23. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559CrossRefGoogle Scholar
  24. Loth K, Pelupessy P, Bodenhausen G (2005) Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy. J Am Chem Soc 127:6062–6068CrossRefGoogle Scholar
  25. Lundstrom P, Mulder FAA, Akke M (2005) Correlated dynamics of consecutive residues reveal transient and cooperative unfolding of secondary structure in proteins. Proc Natl Acad Sci USA 102:16984–16989CrossRefADSGoogle Scholar
  26. Mandel AM, Akke M, Palmer AG (1995) Backbone dynamics of escherichia-coli ribonuclease Hi—Correlations with Structure and Function in an Active Enzyme. J Mol Biol 246:144–163CrossRefGoogle Scholar
  27. Mannfors BE, Mirkin NG, Palmo K, Krimm S (2003) Analysis of the pyramidalization of the peptide group nitrogen: implications for molecular mechanics energy functions. J Phys Chem A 107:1825–1832CrossRefGoogle Scholar
  28. Markwick PRL, Sattler M (2004) Site-specific variations of carbonyl chemical shift anisotropies in proteins. J Am Chem Soc 126:11424–11425CrossRefGoogle Scholar
  29. Mittermaier A, Kay LE (2006) Review—New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228CrossRefADSGoogle Scholar
  30. Mosteller F, Tukey JW (1977) Data analysis and regression: a second course in statistics. Addison-Wesley, ReadingGoogle Scholar
  31. Orekhov VY, Pervushin KV, Arseniev AS (1994) Backbone dynamics of (1–71) bacterioopsin studied by 2-dimensional H-1-N-15 NMR-spectroscopy. Eur J Biochem 219:887–896CrossRefGoogle Scholar
  32. Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640CrossRefGoogle Scholar
  33. Pang Y, Buck M, Zuiderweg ERP (2002) Backbone dynamics of the ribonuclease binase active site area using multinuclear (N-15 and (CO)-C-13) NMR relaxation and computational molecular dynamics. Biochemistry 41:2655–2666CrossRefGoogle Scholar
  34. Pelupessy P, Ravindranathan S, Bodenhausen G (2003) Correlated motions of successive amide N-H bonds in proteins. J Biomol NMR 25:265–280CrossRefGoogle Scholar
  35. Pelupessy P, Ferrage F, Bodenhausen G (2007) Accurate measurement of longitudinal cross-relaxation rates in nuclear magnetic resonance. J Chem Phys 126:134508CrossRefADSGoogle Scholar
  36. Peng JW, Wagner G (1992) Mapping of spectral density-functions using heteronuclear NMR relaxation measurements. J Magn Reson 98:308–332Google Scholar
  37. Tugarinov V, Liang ZC, Shapiro YE, Freed JH, Meirovitch E (2001) A structural mode-coupling approach to N-15 NMR relaxation in proteins. J Am Chem Soc 123:3055–3063CrossRefGoogle Scholar
  38. Ulmer TS, Ramirez BE, Delaglio F, Bax A (2003) Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. J Am Chem Soc 125:9179–9191CrossRefGoogle Scholar
  39. Vugmeyster L, McKnight CJ (2008) Slow motions in chicken villin headpiece subdomain probed by cross-correlated NMR relaxation of amide NH bonds in successive residues. Biophys J 95:5941–5950CrossRefGoogle Scholar
  40. Vugmeyster L, McKnight CJ (2009) Phosphorylation-induced changes in backbone dynamics of the dematin headpiece C-terminal domain. J Biomol NMR 43:39–50CrossRefGoogle Scholar
  41. Vugmeyster L, Raleigh DP, Palmer AG, Vugmeister BE (2003) Beyond the decoupling approximation in the model free approach for the interpretation of NMR relaxation of macromolecules in solution. J Am Chem Soc 125:8400–8404CrossRefGoogle Scholar
  42. Vugmeyster L, Pelupessy P, Vugmeister BE, Abergel D, Bodenhausen G (2004) Cross-correlated relaxation in NMR of macromolecules in the presence of fast and slow internal dynamics. C R Phys 5:377–386CrossRefADSGoogle Scholar
  43. Wang TZ, Cai S, Zuiderweg ERP (2003) Temperature dependence of anisotropic protein backbone dynamics. J Am Chem Soc 125:8639–8643CrossRefGoogle Scholar
  44. Wang TZ, Frederick KK, Igumenova TI, Wand AJ, Zuiderweg ERP (2005) Changes in calmodulin main-chain dynamics upon ligand binding revealed by cross-correlated NMR relaxation measurements. J Am Chem Soc 127:828–829CrossRefGoogle Scholar
  45. Wang T, Weaver DS, Cai S, Zuiderweg ERP (2006) Quantifying Lipari–Szabo modelfree parameters from 13CO NMR relaxation experiments. J Biomol NMR 36:79–102CrossRefGoogle Scholar
  46. Wei YF, Lee DK, Ramamoorthy A (2001) Solid-state C-13 NMR chemical shift anisotropy tensors of polypeptides. J Am Chem Soc 123:6118–6126CrossRefGoogle Scholar
  47. Yang DW, Mittermaier A, Mok YK, Kay LE (1998) A study of protein side-chain dynamics from new H-2 auto-correlation and C-13 cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. J Mol Biol 276:939–954CrossRefGoogle Scholar
  48. Yang A, Miron S, Mouawad L, Duchambon P, Bloquit Y, Craescu CT (2006) Flexibility and plasticity of human centrin 2 binding to the xeroderma pigmentosum group c protein (XPC) from nuclear excision repair. Biochemistry 45:3653–3663CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemistry and Environment and Natural Resources InstituteUniversity of Alaska at AnchorageAnchorageUSA
  2. 2.Department of Mathematical SciencesUniversity of Alaska at AnchorageAnchorageUSA
  3. 3.Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkUSA

Personalised recommendations