Journal of Biomolecular NMR

, Volume 47, Issue 2, pp 143–153 | Cite as

Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3− for protein structure analysis

  • Hiromasa Yagi
  • Karin V. Loscha
  • Xun-Cheng Su
  • Mitchell Stanton-Cook
  • Thomas Huber
  • Gottfried Otting


Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and protein–ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, [Gd(DPA)3]3−, can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of [Gd(DPA)3]3− to protein, allowing quantitative distance measurements for nuclear spins within about 15 Å of the Gd3+ ion. Such data accurately define the metal position relative to the protein, greatly enhancing the interpretation of pseudocontact shifts induced by [Ln(DPA)3]3− complexes of paramagnetic lanthanide (Ln3+) ions other than gadolinium. As an example we studied the quaternary structure of the homodimeric GCN4 leucine zipper.


Lanthanide tags Leucine zipper NMR spectroscopy Paramagnetic relaxation enhancements Pseudocontact shifts 



Financial support by the Australian Research Council is gratefully acknowledged.

Supplementary material

10858_2010_9416_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1169 kb)


  1. Arnesano F, Banci L, Piccioli M (2005) NMR structures of paramagnetic metalloproteins. Quart Rev Biophys 38:167–219CrossRefGoogle Scholar
  2. Baker RT, Catanzariti AM, Karunasekara Y, Soboleva TA, Sharwood R, Whitney S, Board PG (2005) Using deubiquitylating enzymes as research tools. Methods Enzymol 398:540–554CrossRefGoogle Scholar
  3. Balayssac S, Bertini I, Bhaumik A, Lelli M, Luchinat C (2008) Paramagnetic shifts in solid-state NMR of proteins to elicit structural information. Proc Natl Acad Sci 105:17284–17289CrossRefADSGoogle Scholar
  4. Benmelouka M, Borel A, Moriggi L, Helm L, Merbach AE (2007) Design of Gd(III)-based magnetic resonance imaging contrast agents: static and transient zero-field splitting contributions to the electronic relaxation and their impact on relaxivity. J Phys Chem B 111:832–840CrossRefGoogle Scholar
  5. Bertini I, Luchinat C, Parigi G, Pierattelli R (2008) NMR spectroscopy of paramagnetic metalloproteins. Dalton Trans 2008:3782–3790CrossRefGoogle Scholar
  6. Bloembergen N, Morgan LO (1961) Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation. J Chem Phys 34:842–850CrossRefADSGoogle Scholar
  7. Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109:4108–4139CrossRefGoogle Scholar
  8. Farrow NE, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33:5984–6003CrossRefGoogle Scholar
  9. Ferretti JA, Weiss GH (1989) One-dimensional nuclear Overhauser effects and peak intensity measurements. Meth Enzymol 176:3–11CrossRefGoogle Scholar
  10. Guéron M (1975) Nuclear relaxation in macromolecules by paramagnetic ions–novel mechanism. J Magn Reson 19:249–273Google Scholar
  11. Iwahara J, Tang C, Clore GM (2007) Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules. J Magn Reson 184:185–195CrossRefADSGoogle Scholar
  12. Junius FK, Mackay JP, Bubb WA, Jensen SA, Weiss AS, King GF (1995) Nuclear magnetic resonance characterization of the Jun leucine-zipper domain–unusual properties of coiled-coil interfacial polar residues. Biochemistry 34:6164–6174CrossRefGoogle Scholar
  13. Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55CrossRefGoogle Scholar
  14. Kowalewski J, Nordenskiöld L, Benetis N, Westlund PO (1985) Theory of nuclear-spin relaxation in paramagnetic systems in solution. Prog NMR Spectr 17:141–185CrossRefGoogle Scholar
  15. Mackay JP, Shaw GL, King GF (1996) Backbone dynamics of the c-Jun leucine zipper: 15N NMR relaxation studies. Biochemistry 35:4867–4877CrossRefGoogle Scholar
  16. Man B, Su XC, Liang H, Simonsen S, Huber T, Messerle BA, Otting G (2010) 3-Mercapto-2,6-pyridinedicarboxylic acid: a small lanthanide-binding tag for protein studies by NMR spectroscopy. Chem Eur J 16:3827–3832CrossRefGoogle Scholar
  17. Matousek WM, Ciani B, Fitch CA, Garcia-Moreno B, Kammerer RA, Alexandrescu AT (2007) Electrostatic contributions to the stability of the GCN4 leucine zipper structure. J Mol Biol 374:206–219CrossRefGoogle Scholar
  18. O’Donoghue SI, King GF, Nilges M (1996) Calculation of symmetric multimer structures from NMR data using a priori knowledge of the monomer structure, co-monomer restraints, and interface mapping: the case of leucine zippers. J Biomol NMR 8:193–206Google Scholar
  19. O’Shea EK, Rutkowski R, Kim PS (1989) Evidence that the leucine zipper is a coiled coil. Science 243:538–542CrossRefADSGoogle Scholar
  20. O’Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a 2-stranded, parallel coiled coil. Science 254:539–544CrossRefADSGoogle Scholar
  21. Oas TG, McIntosh LP, O’Shea EK, Dahlquist FW, Kim PS (1990) Secondary structure of a leucine zipper determined by nuclear magnetic resonance spectroscopy. Biochemistry 29:2891–2894CrossRefGoogle Scholar
  22. Otting G (2008) Prospects for lanthanides in structural biology by NMR. J Biomol NMR 42:1–9CrossRefGoogle Scholar
  23. Pintacuda G, Otting G (2002) Identification of protein surfaces by NMR measurements with a paramagnetic Gd(III) chelate. J Am Chem Soc 124:372–373CrossRefGoogle Scholar
  24. Pintacuda G, Kaikkonen A, Otting G (2004a) Modulation of the distance dependence of paramagnetic relaxation enhancements by CSAxDSA cross-correlation. J Magn Reson 171:233–243CrossRefADSGoogle Scholar
  25. Pintacuda G, Moshref A, Leonchiks A, Sharipo A, Otting G (2004b) Site-specific labelling with a metal chelator for protein-structure refinement. J Biomol NMR 29:351–361CrossRefGoogle Scholar
  26. Pintacuda G, John M, Su XC, Otting G (2007) NMR structure determination of protein-ligand complexes by lanthanide labeling. Acc Chem Res 40:206–212CrossRefGoogle Scholar
  27. Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189CrossRefGoogle Scholar
  28. Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565CrossRefADSGoogle Scholar
  29. Su XC, Otting G (2010) Paramagnetic labelling of proteins and oligonucleotides for NMR. J Biomol NMR 46:101–112CrossRefGoogle Scholar
  30. Su XC, Liang H, Loscha KV, Otting G (2009) [Ln(DPA)3]3− is a convenient paramagnetic shift reagent for protein NMR studies. J Am Chem Soc 131:10352–10353CrossRefGoogle Scholar
  31. Ubbink M (2009) The courtship of proteins: understanding the encounter complex. FEBS Lett 583:1060–1066CrossRefGoogle Scholar
  32. Vega AJ, Fiat D (1976) Nuclear relaxation processes of paramagnetic complexes. The slow-motion case. Mol Phys 31:347–355CrossRefADSGoogle Scholar
  33. Vold RL, Waugh JS, Klein MP, Phelps DE (1968) Measurement of spin relaxation in complex systems. J Chem Phys 48:3831–3832CrossRefADSGoogle Scholar
  34. Zweckstetter M, Schnell JR, Chou JJ (2005) Determination of the packing mode of the coiled-coil domain of cGMP-dependent protein kinase Iα in solution using charge-predicted dipolar couplings. J Am Chem Soc 127:11918–11919CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hiromasa Yagi
    • 1
  • Karin V. Loscha
    • 1
  • Xun-Cheng Su
    • 1
  • Mitchell Stanton-Cook
    • 2
  • Thomas Huber
    • 2
  • Gottfried Otting
    • 1
  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia
  2. 2.School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneAustralia

Personalised recommendations