Advertisement

Journal of Biomolecular NMR

, Volume 46, Issue 2, pp 191–197 | Cite as

S3EPY: a Sparky extension for determination of small scalar couplings from spin-state-selective excitation NMR experiments

  • Petr Novák
  • Lukáš ŽídekEmail author
  • Veronika Motáčková
  • Petr Padrta
  • Alžběta Švenková
  • Jean-Marc Nuzillard
  • Libor Krásný
  • Vladimír Sklenář
Article

Abstract

S3EPY is a Python extension to the program Sparky written to facilitate the assessment of coupling constants from in-phase/antiphase and spin-state-selective excitation (S3E) experiments. It enables the routine use of small scalar couplings by automating the coupling evaluation procedure. S3EPY provides an integrated graphical user interface to programs which outputs graphs and the table of determined couplings.

Keywords

Software Sparky Residual dipolar couplings NMR 

Notes

Acknowledgements

This work was supported by the Ministry of Education of the Czech Republic [MSM0021622413, LC06030]; and the Czech Science Foundation [204/09/0583].

References

  1. Andersson P, Weigelt J, Otting G (1998) Spin-state selection filters for the measurement of heteronuclear one-bond coupling constants. J Biomol NMR 12(3):435–441. doi: 10.1023/A:1008239027287 CrossRefGoogle Scholar
  2. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. doi: 10.1007/BF00197809 CrossRefGoogle Scholar
  3. Jansen S, Chmelík J, Žídek L, Padrta P, Novák P, Zdráhal Z, Picimbon JF, Löfstedt C, Sklenář V (2007) Structure of Bombyx mori chemosensory protein 1 in solution. Arch Insect Biochem Physiol 66(3):135–145. doi: 10.1002/arch.20205 CrossRefGoogle Scholar
  4. Lampe M, Binnie C, Schmidt R, Losick R (1988) Cloned gene encoding the delta subunit of Bacillus subtilis RNA polymerase. Gene 67(1):13–19. doi: 10.1016/0378-1119(88)90003-0 CrossRefGoogle Scholar
  5. Meissner A, Duus JØ, Sørensen OW (1997a) Integration of spin-state-selective excitation into 2D NMR correlation experiments with the heteronuclear ZQ/2Q π rotations for 1 J XH-resolved E.COSY-type measurements of heteronuclear coupling constants in proteins. J Biomol NMR 10(1):89–94. doi: 10.1006/jmre.1997.1213 CrossRefGoogle Scholar
  6. Meissner A, Duus JØ, Sørensen OW (1997) Spin-state-selective excitation. Application for E.COSY-type measurement of J HH coupling constants. J Magn Reson 128(1):92–97. doi: 10.1006/jmre.1997.1213 CrossRefADSGoogle Scholar
  7. Mesleh MF, Opella SJ (2003) Dipolar waves as NMR maps of helices in proteins. J Magn Reson 163(2):288–299. doi: 10.1016/S1090-7807(03)00119-8 CrossRefADSGoogle Scholar
  8. Ottiger M, Bax A (1998) Determination of relative N-HN, N-C′, Cα−C′, and Cα−Hα effective bond lengths in a protein by NMR in a dilute liquid crystalline phase. J Am Chem Soc 120(47):12334–12341. doi: 10.1021/ja9826791 CrossRefGoogle Scholar
  9. Ottiger M, Delaglio F, Bax A (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131(2):373–378. doi: 10.1006/jmre.1998.1361 CrossRefADSGoogle Scholar
  10. Padrta P, Štefl R, Králík L, Žídek L, Sklenář V (2002) Refinement of d(GCGAAGC) hairpin structure using one- and two-bond residual dipolar couplings. J Biomol NMR 24(1):1–14. doi: 10.1023/A:1020632900961 CrossRefGoogle Scholar
  11. Permi P, Heikkinen S, Kilpeläinen I, Annila A (1999) Measurement of \(^1J_{{\rm NC^\prime}}\) and \(^2J_{{\rm H^NC^\prime}}\) couplings from spin-state-selective two-dimensional correlation spectrum. J Magn Reson 140(1):32–40. doi: 10.1006/jmre.1999.1817 CrossRefADSGoogle Scholar
  12. Sørensen MD, Meissner A, Sørensen OW (1997) Spin-state-selective coherence transfer via intermediate states of two-spin coherence in IS spin systems: Application to E.COSY-type measurement of J coupling constants. J Biomol NMR 10(2):181–186. doi: 10.1023/A:1018323913680 CrossRefGoogle Scholar
  13. Sørensen MD, Meissner A, Sørensen OW (1999) 13C natural abundance S3E and S3CT experiments for measurement of J coupling constants between 13Cα or 1Hα and other protons in a protein. J Magn Reson 137(1):237–242. doi: 10.1006/jmre.1998.1635 CrossRefADSGoogle Scholar
  14. Tjandra N, Bax A (1997) Measurement of dipolar contributions to 1 J CH splittings from magnetic-field dependence of J modulation in two-dimensional NMR spectra. J Magn Reson 124(2):512–515. doi: 10.1006/jmre.1996.1088 CrossRefADSGoogle Scholar
  15. Wang AC, Bax A (1995) Reparametrization of the Karplus relation for 3 J(Hα–N) and 3 J(HN–C′) in peptides from uniformly 13C/15N-enriched human ubiquitin. J Am Chem Soc 117(6):1810–1813. doi: 10.1021/ja00111a021 CrossRefGoogle Scholar
  16. Williams T, Kelley C, Bröker HB, Campbell J, Cunningham R, Denholm D, Elber G, Fearick R, Grammes C, Hart L, Hecking L, Koenig T, Kotz D, Kubaitis E, Lang R, Lecomte T, Lehmann A, Mai A, Merritt EA, Mikulík P, Steger C, Tkacik T, der Woude JV, Woo A, Zandt JRV, Zellner J (2007) Gnuplot an interactive plotting programGoogle Scholar
  17. Yang D, Venters RA, Mueller GA, Choy W, Kay LE (1999) TROSY-based HNCO pulse sequences for the measurement of 1HN−15N, 15N−13CO, 1HN−13CO, 13CO−13Cα and 1HN−13Cα dipolar couplings in 15N, 13C, 2H-labeled proteins. J Biomol NMR 14(4):333–343. doi: 10.1023/A:1008314803561 CrossRefGoogle Scholar
  18. Žídek L, Wu H, Feigon J, Sklenář V (2001) Measurement of small scalar and dipolar couplings in purine and pyrimidine bases. J Biomol NMR 21(2):153–160. doi: 10.1023/A:1012435106858 CrossRefGoogle Scholar
  19. Žídek L, Padrta P, Chmelík J, Sklenář V (2003) Internal consistency of NMR data obtained in partially aligned biomacromolecules. J Magn Reson 162(2):385–395. doi: 10.1016/S1090-7807(03)00116-2 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Petr Novák
    • 1
  • Lukáš Žídek
    • 1
    Email author
  • Veronika Motáčková
    • 1
  • Petr Padrta
    • 1
  • Alžběta Švenková
    • 2
  • Jean-Marc Nuzillard
    • 3
  • Libor Krásný
    • 2
  • Vladimír Sklenář
    • 1
  1. 1.National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Laboratory of Molecular Genetics of Bacteria, Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.CNRS, Institute de Chimie Moléculaire de ReimsREIMS Cedex 2France

Personalised recommendations