Advertisement

Journal of Biomolecular NMR

, 45:351 | Cite as

Aliasing in reduced dimensionality NMR spectra: (3,2)D HNHA and (4,2)D HN(COCA)NH experiments as examples

  • David Pantoja-Uceda
  • Jorge SantoroEmail author
Communication

Abstract

Reduced dimensionality NMR spectra usually require very large spectral widths in the shared dimension. In this paper we show that aliasing can be introduced in reduced dimensionality NMR spectra either to decrease the acquisition time or increase the resolution of the experiments without losing information. The gains of introducing aliasing are illustrated with two examples, the (3,2)D HNHA and the (4,2)D HN(COCA)NH experiments. In both cases a reduction of the spectral width of more than 50% was possible.

Keywords

Aliasing Reduced dimensionality HNHA HN(COCA)NH Proteins Resonance assignment 

Notes

Acknowledgments

This work was supported by project CTQ2008-00080 from the Spanish Ministerio de Ciencia e Innovación. D.P-U. was supported by a “Juan de la Cierva” contract from the Ministerio de Ciencia e Innovación.

References

  1. Atreya H, Szyperski T (2005) Rapid NMR data collection. Methods Enzymol 394:78–108CrossRefGoogle Scholar
  2. Barnwal RP, Rout AK, Chary KVR, Atreya HS (2007) Rapid measurement of 3J(HN-Hα) and 3J(HN-Hβ) coupling constants in polypeptides. J Biomol NMR 39:259–263CrossRefGoogle Scholar
  3. Brutscher B, Morelle N, Cordier F, Marion D (1995) Determination of an initial set of NOE-derived distance constraints for the structure determination of 15N/13C-labeled proteins. J Magn Reson 109B:238–242Google Scholar
  4. Felli IC, Brutscher B (2009) Recent advances in solution NMR: fast methods and heteronuclear direct detection. ChemPhysChem 10:1356–1368CrossRefGoogle Scholar
  5. Fiorito F, Hiller S, Wider G, Wüthrich K (2006) Automated resonance assignment of proteins: 6D APSY-NMR. J Biomol NMR 35:27–37CrossRefGoogle Scholar
  6. Freeman R, Kupce E (2003) New methods for fast multidimensional NMR. J Biomol NMR 27:101–113CrossRefGoogle Scholar
  7. Freeman R, Kupce E (2004) Distant echoes of the accordion: reduced dimensionality, GFT-NMR, and projection–reconstruction of multidimensional spectra. Concepts Magn Reson 23A:63–75CrossRefGoogle Scholar
  8. Grzesiek S, Anglister J, Ren H, Bax A (1993) Carbon-13 line narrowing by deuterium decoupling in deuterium/carbon-13/nitrogen-15 enriched proteins. Application to triple resonance 4D J connectivity of sequential amides. J Am Chem Soc 115:4369–4370CrossRefGoogle Scholar
  9. Hiller S, Wasmer C, Wider G, Wüthrich K (2007) Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J Am Chem Soc 129:10823–10828CrossRefGoogle Scholar
  10. Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393CrossRefGoogle Scholar
  11. Kozminski W, Zhukov I (2003) Multiple quadrature detection in reduced dimensionality experiments. J Biomol NMR 26:157–166CrossRefGoogle Scholar
  12. Kupce E, Freeman R (2003) Projection-reconstruction of three-dimensinal NMR spectra. J Am Chem Soc 125:13958–13959CrossRefGoogle Scholar
  13. Lescop E, Rasia R, Brutscher B (2008) Hadamard amino-acid-type edited NMR experiment for fast protein resonance assignment. J Am Chem Soc 130:5014–5015CrossRefGoogle Scholar
  14. Malmodin D, Billeter M (2005a) High-throughput analysis of protein NMR spectra. Prog Nucl Magn Reson Spectrosc 46:13486–13487Google Scholar
  15. Malmodin D, Billeter M (2005b) Multiway decomposition of NMR spectra with coupled evolution periods. J Am Chem Soc 127:5014–5015CrossRefGoogle Scholar
  16. Malmodin D, Billeter M (2006) Robust and versatile interpretation of spectra with coupled evolution periods using mult-way decomposition. Mag Res Chem 44:S185–S195CrossRefGoogle Scholar
  17. Mueller GA (2009) Analytical solution to the coupled evolution of multidimensional NMR data. J Biomol NMR 44:13–23CrossRefGoogle Scholar
  18. Panchal SC, Bhavesh NS, Hosur RV (2001) Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: application to unfolded proteins. J Biomol NMR 20:135–147CrossRefGoogle Scholar
  19. Pantoja-Uceda D, Santoro J (2008) Amino acid type identification in NMR spectra of proteins via β- and γ-carbon edited experiments. J Magn Res 195:187–195CrossRefADSGoogle Scholar
  20. Schubert M, Smalla M, Schmieder P, Oschkinat H (1999) MUSIC in triple-resonance experiments: amino acid type-selective 1H-15N correlations. J Magn Res 141:34–43CrossRefADSGoogle Scholar
  21. Simorre JP, Brutscher B, Caffrey MS, Marion D (1994) Assignment of NMR spectra of proteins using triple-resonance two-dimensional experiments. J Biomol NMR 4:325–333CrossRefGoogle Scholar
  22. Sun ZJ, Frueh DP, Selenko P, Hoch JC, Wagner G (2005) Fast assignment of 15N-HSQC peaks using high-resolution 3D HNcocaNH experiments with non-uniform sampling. J Biomol NMR 33:43–50CrossRefGoogle Scholar
  23. Szyperski T, Atreya HS (2006) Principles and applications of GFT projection NMR spectroscopy. Magn Reson Chem 44:S51–S60CrossRefGoogle Scholar
  24. Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993a) 3D 13C-15N-heteronuclear two-spin coherence spectroscopy for polypeptide backbones assignments in 13C-15N-double-labeled proteins. J Biomol NMR 3:127–132Google Scholar
  25. Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993b) Reduced dimensionality in triple-resonance NMR experiments. J Am Chem Soc 115:9307–9308CrossRefGoogle Scholar
  26. Szyperski T, Braun D, Fernández C, Bartels C, Wüthrich K (1995) A novel reduced-dimensionality triple-resonance experiment for efficient polypeptide backbone assignment, 3D CO HN N CA. J Magn Res 108B:197–203Google Scholar
  27. Vuister GW, Bax A (1993) Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNHα) coupling constants in 15N-enriched proteins. J Am Chem Soc 115:7772–7777CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Instituto de Química Física Rocasolano, CSICMadridSpain

Personalised recommendations