Journal of Biomolecular NMR

, 45:361 | Cite as

Simple tests for the validation of multiple field spin relaxation data

Article

Abstract

15N spin relaxation data is widely used to extract detailed dynamic information regarding bond vectors such as the amide N–H bond of the protein backbone. Analysis is typically carried using the Lipari–Szabo model-free approach. Even though the original model-free equation can be determined from single field R1, R2 and NOE, over-determination of more complex motional models is dependent on the recording of multiple field datasets. This is especially important for the characterization of conformational exchange which affects R2 in a field dependent manner. However, severe artifacts can be introduced if inconsistencies arise between experimental setups with different magnets (or samples). Here, we propose the use of simple tests as validation tools for the assessment of consistency between different datasets recorded at multiple magnetic fields. Synthetic data are used to show the effects of inconsistencies on the proposed tests. Moreover, an analysis of data currently deposited in the BMRB is performed. Finally, two cases from our laboratory are presented. These tests are implemented in the open-source program relax, and we propose their use as a routine check-up for assessment of multiple field dataset consistency prior to any analysis such as model-free calculations. We believe this will aid in the extraction of higher quality dynamics information from 15N spin relaxation data.

Keywords

Consistency test Model-free analysis Spin relaxation Protein dynamics relax program 

Notes

Acknowledgments

We would like to thank Chris MacRaild for conversations at the beginning of this work, Edward d’Auvergne for encouraging us to implement these simple tests into relax, Lukáš Žídek for enthusiastic comments on this work, and Pierre-Yves Savard for critical reading of this manuscript. This work was supported by operating grants from FQRNT (Québec) and NSERC (Canada), infrastructure grants from CFI (Canada) and studentships to S. Morin from NSERC (Canada), FRSQ (Québec) and Fondation J. Arthur Vincent.

Supplementary material

10858_2009_9381_MOESM1_ESM.pdf (103 kb)
PDF (103 KB)

References

  1. Abragam A (1961) The principles of nuclear magnetism. Clarendon Press, OxfordGoogle Scholar
  2. Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990) Deviations from the simple 2-parameter model-free approach to the interpretation of Nitrogen-15 nuclear magnetic-relaxation of proteins. J Am Chem Soc 112:4989–4991CrossRefGoogle Scholar
  3. Coles M, Diercks T, Muehlenweg B, Bartsch S, Zözer V, Tschesche H, Kessler H (1999) The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. J Mol Biol 289:139–157CrossRefGoogle Scholar
  4. d’Auvergne EJ, Gooley PR (2003) The use of model selection in the model-free analysis of protein dynamics. J Biomol NMR 25:25–39CrossRefGoogle Scholar
  5. d’Auvergne EJ, Gooley PR (2008a) Optimisation of NMR dynamic models i. minimisation algorithms and their performance within the model-free and brownian rotational diffusion spaces. J Biomol NMR 40:107–119CrossRefGoogle Scholar
  6. d’Auvergne EJ, Gooley PR (2008b) Optimisation of NMR dynamic models ii a new methodology for the dual optimisation of the model-free parameters and the brownian rotational diffusion tensor. J Biomol NMR 40:121–133CrossRefGoogle Scholar
  7. Ding Z, Lee G, Liang X, Gallazzi F, Arunima A, Doren SRV (2005) PhosphoThr peptide binding globally rigidifies much of the FHA domain from Arabidopsis receptor kinase-associated protein phosphatase. Biochemistry 44:10119–10134CrossRefGoogle Scholar
  8. Einstein A (1905) Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann Phys 17:891–921CrossRefGoogle Scholar
  9. Farrow N, Zhang O, Szabo A, Torchia D, Kay LE (1995) Spectral density function mapping using 15N relaxation data exclusively. J Biomol NMR 6:153–162CrossRefGoogle Scholar
  10. Fischer M, Majumdar A, Zuiderweg ERP (1998) Protein NMR relaxation: theory, application and outlook. Prog Nucl Magn Reson Spectrosc 33:207–272CrossRefGoogle Scholar
  11. Franzoni L, Lücke C, Pérez C, Cavazzini D, Rademacher M, Ludwig C, Spisni A, Rossi GL, Rüterjans H (2002) Structure and backbone dynamics of apo- and holo-cellular retinol-binding protein in solution. J Biol Chem 277:21983–21997CrossRefGoogle Scholar
  12. Fushman D, Tjandra N, Cowburn D (1998) Direct measurement of 15N chemical shift anisotropy in solution. J Am Chem Soc 120:10947–10952CrossRefGoogle Scholar
  13. Fushman D, Tjandra N, Cowburn D (1999) An approach to direct determination of protein dynamics from 15N NMR relaxation at multiple fields, independent of variable 15N chemical shift anisotropy and chemical exchange contributions. J Am Chem Soc 121:8577–8582CrossRefGoogle Scholar
  14. Go A, Kim S, Baum J, Hecht MH (2008) Structure and dynamics of de novo proteins from a designed superfamily of 4-helix bundles. Protein Sci 17(5):821–832CrossRefGoogle Scholar
  15. Hansen DF, Yang D, Feng H, Zhou Z, Wiesner S, Bai Y, Kay LE (2007) An exchange-free measure of 15N transverse relaxation: an NMR spectroscopy application to the study of a folding intermediate with pervasive chemical exchange. J Am Chem Soc 129:11468–11479CrossRefGoogle Scholar
  16. Hurvich C, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307MATHCrossRefMathSciNetGoogle Scholar
  17. Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–8979CrossRefGoogle Scholar
  18. Kempf JG, Jung JY, Ragain C, Sampson NS, Loria JP (2007) Dynamic requirements for a functional protein hinge. J Mol Biol 368:131–149CrossRefGoogle Scholar
  19. Korzhnev DM, Billeter M, Arseniev AS, Orekhov VY (2001) NMR studies of Brownian tumbling and internal motions in proteins. Prog Nucl Magn Reson Spectrosc 38:197–266CrossRefGoogle Scholar
  20. Kroenke CD, Rance M, Palmer AG (1999) Variability of the 15N chemical shift anisotropy in Escherichia coli ribonuclease H in solution. J Am Chem Soc 121:10119–10125CrossRefGoogle Scholar
  21. Lee AL, Wand AJ (1999) Assessing potential bias in the determination of rotational correlation times of proteins by NMR relaxation. J Biomol NMR 13:101–112CrossRefGoogle Scholar
  22. Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559CrossRefGoogle Scholar
  23. Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570CrossRefGoogle Scholar
  24. Mandel AM, Akke M, Palmer AG (1995) Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol 246:144–163CrossRefGoogle Scholar
  25. Morin S, Gagné SM (2009) NMR dynamics of PSE-4 β-lactamase: an interplay of ps–ns order and μs–ms motions in the active site. Biophys J 96:4681–4691CrossRefGoogle Scholar
  26. Reincke B, Pérez C, Pristovsek P, Löcke C, Ludwig C, Löhr F, Rogov VV, Ludwig B, Rüterjans H (2001) Solution structure and dynamics of the functional domain of paracoccus denitrificans cytochrome c552 in both redox states. Biochemistry 40:12312–12320CrossRefGoogle Scholar
  27. Savard PY, Gagné SM (2006) Backbone dynamics of TEM-1 determined by NMR: evidence for a highly ordered protein. Biochemistry 45:11414–11424CrossRefGoogle Scholar
  28. Schurr JM, Babcock HP, Fujimoto BS (1994) A test of the model-free formulas. Effects of anisotropic rotational diffusion and dimerization. J Magn Reson Ser B 105:211–224CrossRefGoogle Scholar
  29. Shapiro YE, Kahana E, Tugarinov V, Liang Z, Freed JH, Meirovitch E (2002) Domain flexibility in ligand-free and inhibitor-bound Escherichia coli adenylate kinase based on a mode-coupling analysis of 15N spin relaxation. Biochemistry 41:6271–6281CrossRefGoogle Scholar
  30. Smoluchowski M (1906) Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Ann Phys 21:756–780CrossRefGoogle Scholar
  31. Soss SE, Flynn PF (2007) Functional implications for a prototypical k-turn binding protein from structural and dynamical studies of 15.5 K. Biochemistry 46:14979–14986CrossRefGoogle Scholar
  32. Tjandra N, Szabo A, Bax A (1996a) Protein backbone dynamics and 15N chemical shift anisotropy from quantitative measurement of relaxation interference effects. J Am Chem Soc 118:6986–6991CrossRefGoogle Scholar
  33. Tjandra N, Wingfield P, Stahl S, Bax A (1996b) Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J Biomol NMR 8:273–284CrossRefGoogle Scholar
  34. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Wenger RK, Yao H, Markley JL (2008) Biomagresbank. Nucleic Acids Res 36:D402–D408CrossRefGoogle Scholar
  35. Yip GNB, Zuiderweg ERP (2004) A phase cycle scheme that significantly suppresses offset-dependent artifacts in the R 2-CPMG 15N relaxation experiment. J Magn Reson 171:25–36CrossRefADSGoogle Scholar
  36. Yip GNB, Zuiderweg ERP (2005) Improvement of duty-cycle heating compensation in NMR spin relaxation experiments. J Magn Reson 176:171–178CrossRefADSGoogle Scholar
  37. Zhuravleva AV, Korzhnev DM, Kupce E, Arseniev AS, Billeter M, Orekhov VY (2004) Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures. J Mol Biol 342:1599–1611CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Département de Biochimie et de Microbiologie and PROTEOUniversité LavalQuébecCanada

Personalised recommendations