Journal of Biomolecular NMR

, 45:319 | Cite as

Characterization of different water pools in solid-state NMR protein samples

  • Anja BöckmannEmail author
  • Carole Gardiennet
  • René Verel
  • Andreas Hunkeler
  • Antoine Loquet
  • Guido Pintacuda
  • Lyndon Emsley
  • Beat H. Meier
  • Anne LesageEmail author


We observed and characterized two distinct signals originating from different pools of water protons in solid-state NMR protein samples, namely from crystal water which exchanges polarization with the protein (on the NMR timescale) and is located in the protein-rich fraction at the periphery of the magic-angle spinning (MAS) sample container, and supernatant water located close to the axis of the sample container. The polarization transfer between the water and the protein can be probed by two-dimensional exchange spectroscopy, and we show that the supernatant water does not interact with protein on the timescale of the experiments. The two water pools have different spectroscopic properties, including resonance frequency, longitudinal, transverse and rotating frame relaxation times. The supernatant water can be removed almost completely physically or can be frozen selectively. Both measures lead to an enhancement of the quality factor of the probe circuit, accompanied by an improvement of the experimental signal/noise, and greatly simplify solvent-suppression by substantially reducing the water signal. We also present a tool, which allows filling solid-state NMR sample containers in a more efficient manner, greatly reducing the amount of supernatant water and maximizing signal/noise.


Solid-state NMR Water–protein polarization transfer Microcrystalline protein Chemical exchange 



We thank Michel Juy for the picture of the Crh proteins arranged in the unit cell. This work was funded in part by CNRS, the French Research Ministry (ANR JCJC JC05_44957, ANR PCV 07 PROTEIN MOTION), the Swiss National Science Foundation (SNF) and the ETH Zurich.

Supplementary material

10858_2009_9374_MOESM1_ESM.pdf (658 kb)
(PDF 659 kb)


  1. Ader C, Schneider R, Seidel K, Etzkorn M, Becker S, Baldus M (2009) Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J Am Chem Soc 131:170–176CrossRefGoogle Scholar
  2. Aime S, Bruno E, Cabella C, Colombatto S, Digilio G, Mainero V (2005) HR-MAS of cells: a “Cellular Water Shift” due to water-protein interactions? Magn Res Med 54:1547–1552CrossRefGoogle Scholar
  3. Andronesi O, von Bergen M, Biernat J, Seidel K, Griesinger C, Mandelkow E, Baldus M (2008) Characterization of Alzheimer’s-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy. J Am Chem Soc 130:5922–5928CrossRefGoogle Scholar
  4. Baldus M (2006) Solid-state NMR spectroscopy: molecular structure and organization at the atomic level. Angew Chem Int Ed Engl 45:1186–1188CrossRefGoogle Scholar
  5. Böckmann A (2007) High-resolution solid-state MAS NMR of proteins—Crh as an example. Magn Reson Chem 45:S24–S31CrossRefGoogle Scholar
  6. Böckmann A, Lange A, Galinier A, Luca S, Giraud N, Juy M, Heise H, Montserret R, Penin F, Baldus M (2003) Solid-state NMR sequential resonance assignments and conformational analysis of the 2 × 10.4 kDa dimeric form of the Bacillus subtilis protein Crh. J Biomol NMR 27(32):3–339Google Scholar
  7. Böckmann A, Juy M, Bettler E, Emsley L, Galinier A, Penin F, Lesage A (2005) Water-protein hydrogen exchange in the micro-crystalline protein Crh as observed by solid state NMR spectroscopy. J Biomol NMR 32:195–207CrossRefGoogle Scholar
  8. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102CrossRefADSGoogle Scholar
  9. Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ (1996) Protein NMR spectroscopy: principles and practice. Elsevier Science, USAGoogle Scholar
  10. Chevelkov V, Faelber K, Diehl A, Heinemann U, Oschkinat H, Reif B (2005) Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of alpha-spectrin by MAS solid-state NMR. J Biomol NMR 31:295–310CrossRefGoogle Scholar
  11. Chevelkov V, Faelber K, Schrey A, Rehbein K, Diehl A, Reif B (2007) Differential line broadening in MAS solid-state NMR due to dynamic interference. J Am Chem Soc 129:10195–10200CrossRefGoogle Scholar
  12. Chevelkov V, Diehl A, Reif B (2008) Measurement of 15 N–T1 relaxation rates in a perdeuterated protein by magic angle spinning solid-state nuclear magnetic resonance spectroscopy. J Chem Phys 128:052316CrossRefADSGoogle Scholar
  13. Etzkorn M, Martell S, Andronesi O, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 46:459–462CrossRefGoogle Scholar
  14. Galinier A, Haiech J, Kilhoffer MC, Jaquinod M, Stulke J, Deutscher J, Martin-Verstraete I (1997) The Bacillus subtilis crh gene encodes a Hpr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci USA 94:8439–8444CrossRefADSGoogle Scholar
  15. Giraud N, Blackledge M, Goldman M, Böckmann A, Lesage A, Penin F, Emsley L (2005) Quantitative analysis of backbone dynamics in a crystalline protein from Nitrogen-15 spin-lattice relaxation. J Am Chem Soc 127:18190–18201CrossRefGoogle Scholar
  16. Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515CrossRefGoogle Scholar
  17. Grzesiek S, Bax A (1993) The importance of not saturating H2O in protein NMR: application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594CrossRefGoogle Scholar
  18. Halle B (2003) Cross-relaxation between macromolecular and solvent spins: the role of long-range dipole couplings. J Chem Phys 119:12372–12385CrossRefADSGoogle Scholar
  19. Harbison GS, Roberts JE, Herzfeld J, Griffin RG (1988) Solid-state NMR detection of proton exchange between the bacteriorhodopsin Schiff base and bulk water. J Am Chem Soc 110:7221–7223CrossRefGoogle Scholar
  20. Hiller S, Wider G, Etezady-Esfarjani T, Horst R, Wüthrich K (2005) Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures. J Biomol NMR 32:61–70CrossRefGoogle Scholar
  21. Hologne M, Faelber K, Diehl A, Reif B (2005) Characterization of dynamics of perdeuterated proteins by MAS solid-state NMR. J Am Chem Soc 127:11208–11209CrossRefGoogle Scholar
  22. Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D structure of amyloid protofilaments of beta2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci U S A 103:18119–18124CrossRefADSGoogle Scholar
  23. Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 101:711–716CrossRefADSGoogle Scholar
  24. Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553CrossRefADSGoogle Scholar
  25. Juy M, Penin F, Favier A, Galinier A, Montserret R, Haser R, Deutscher J, Böckmann A (2003) Dimerization of Crh by reversible 3D domain swapping induces structural adjustments to its monomeric homologue HPr. J Mol Biol 332:767–776CrossRefGoogle Scholar
  26. Kumashiro KK, Schmidt-Rohr K, Thompson LK (1998) A novel tool for probing membrane protein structure: solid-state NMR with proton spin diffusion and X-nucleus detection. J Am Chem Soc 120:5043CrossRefGoogle Scholar
  27. Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 44:2–5Google Scholar
  28. Lesage A, Böckmann A (2003) Water–protein interactions in microcrystalline Crh measured by 1H–13C solid-state NMR spectroscopy. J Am Chem Soc 125:13336–13337CrossRefGoogle Scholar
  29. Lesage A, Emsley L, Penin F, Böckmann A (2006) Investigation of dipolar-mediated water-protein interactions in microcrystalline Crh by solid-state NMR spectroscopy. J Am Chem Soc 128:8246–8255CrossRefGoogle Scholar
  30. Lesage A, Gardiennet C, Loquet A, Verel R, Pintacuda G, Emsley L, Meier BH, Böckmann A (2008) Polarization transfer over the water–protein interface in solid proteins. Angew Chem Int Ed Engl 47:5851–5854CrossRefGoogle Scholar
  31. Loquet A, Bardiaux B, Gardiennet C, Blanchet C, Baldus M, Nilges M, Malliavin T, Bockmann A (2008) 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. J Am Chem Soc 130:3579–3589CrossRefGoogle Scholar
  32. Lorieau JL, McDermott AE (2006) Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy. J Am Chem Soc 128:11505–11512CrossRefGoogle Scholar
  33. Lorieau JL, Day LA, McDermott AE (2008) Conformational dynamics of an intact virus: order parameters for the coat protein of Pf1 bacteriophage. Proc Natl Acad Sci U S A 105:10366–10371CrossRefADSGoogle Scholar
  34. Mallamace F, Corsaro C, Broccio M, Branca C, Gonzalez-Segredo N, Spooren J, Chen SH, Stanley HE (2008) NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water. Proc Natl Acad Sci U S A 105:12725–12729CrossRefADSGoogle Scholar
  35. Manolikas T, Herrmann T, Meier BH (2008) Protein structure determination from 13C spin-diffusion solid-state NMR. J Am Chem Soc 130:3959–3966CrossRefGoogle Scholar
  36. McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 14:554–561CrossRefGoogle Scholar
  37. Meier BH, Ernst RR (1979) Elucidation of chemical exchange networks by two-dimensional NMR spectroscopy: the heptamethylbenzenonium ion. J Am Chem Soc 101:6441–6442CrossRefGoogle Scholar
  38. Modig K, Liepinsh E, Otting G, Halle B (2004) Dynamics of protein and peptide hydration. J Am Chem Soc 126:102–114CrossRefGoogle Scholar
  39. Otting G (1997) NMR studies of water bound to biological molecules. Prog NMR Spectrosc 31:259–285CrossRefGoogle Scholar
  40. Paulson EK, Morcombe CR, Gaponenko V, Dancheck B, Byrd RA, Zilm KW (2003) High-sensitivity observation of dipolar exchange and NOEs between exchangeable protons in proteins by 3D solid-state NMR spectroscopy. J Am Chem Soc 125:14222–14223CrossRefGoogle Scholar
  41. Ravindranathan KP, Gallicchio E, McDermott AE, Levy RM (2007) Conformational dynamics of substrate in the active site of cytochrome P450 BM-3/NPG complex: insights from NMR order parameters. J Am Chem Soc 129:474–475CrossRefGoogle Scholar
  42. Schneider R, Ader C, Lange A, Giller K, Hornig S, Pongs O, Becker S, Baldus M (2008) Solid-state NMR spectroscopy applied to a chimeric potassium channel in lipid bilayers. J Am Chem Soc 130:7427–7435CrossRefGoogle Scholar
  43. Segawa T, Kateb F, Duma L, Bodenhausen G, Pelupessy P (2008) Exchange Rate constants of invisible protons in proteins determined by NMR spectroscopy. Chembiochem 9:537–542CrossRefGoogle Scholar
  44. Skalicky JJ, Sukumaran DK, Mills JL, Szyperski T (2000) Toward structural biology in supercooled water. J Am Chem Soc 122:3230–3231CrossRefGoogle Scholar
  45. Skalicky JJ, Mills JL, Sharma S, Szyperski T (2001) Aromatic ring-flipping in supercooled water: implications for NMR-based structural biology of proteins. J Am Chem Soc 123:388–397CrossRefGoogle Scholar
  46. Sklenár V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for 1H–15 N HSQC experiments optimized to retain full sensitivity. J Magn Reson A 102:241–245CrossRefGoogle Scholar
  47. Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14:96–103CrossRefGoogle Scholar
  48. Wasmer C, Lange A, Melckebeke HV, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523CrossRefADSGoogle Scholar
  49. Zhou DH, Rienstra CM (2008) High-performance solvent suppression for proton detected solid-state NMR. J Magn Reson 192:167–172CrossRefADSGoogle Scholar
  50. Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM (2007a) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801CrossRefGoogle Scholar
  51. Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007b) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed Engl 46:8380–8383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Anja Böckmann
    • 1
    Email author
  • Carole Gardiennet
    • 1
  • René Verel
    • 2
  • Andreas Hunkeler
    • 2
  • Antoine Loquet
    • 1
  • Guido Pintacuda
    • 3
  • Lyndon Emsley
    • 3
  • Beat H. Meier
    • 2
  • Anne Lesage
    • 3
    Email author
  1. 1.Institut de Biologie et Chimie des ProtéinesUniversité de Lyon, UMR 5086 CNRS/UCB-Lyon 1LyonFrance
  2. 2.Physical ChemistryETH ZürichZurichSwitzerland
  3. 3.Université de Lyon, CNRS/ENS Lyon/UCB-Lyon 1VilleurbanneFrance

Personalised recommendations