Advertisement

Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies

  • Pei Zhou
  • Gerhard WagnerEmail author
PERSPECTIVE

Abstract

Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR. We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs.

Keywords

NMR Solubility enhancement tag Protein aggregation Protein GB1 Protein Protein stability enhancement 

Notes

Acknowledgements

This work was supported by NIH (grants GM47467 to GW and GM079376 to PZ). PZ would like to thank Prof. Terrence G. Oas (Department of Biochemistry, Duke University Medical Center) for critical reading of the manuscript.

References

  1. Bach H, Mazor Y, Shaky S, Shoham-Lev A, Berdichevsky Y, Gutnick DL, Benhar I (2001) Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J Mol Biol 312:79–93CrossRefGoogle Scholar
  2. Bagby S, Tong KI, Liu D, Alattia JR, Ikura M (1997) The button test: a small scale method using microdialysis cells for assessing protein solubility at concentrations suitable for NMR. J Biomol NMR 10:279–282CrossRefGoogle Scholar
  3. Catic A, Sun ZY, Ratner DM, Misaghi S, Spooner E, Samuelson J, Wagner G, Ploegh HL (2007) Sequence and structure evolved separately in a ribosomal ubiquitin variant. EMBO J 26:3474–3483CrossRefGoogle Scholar
  4. Chang YG, Song AX, Gao YG, Shi YH, Lin XJ, Cao XT, Lin DH, Hu HY (2006) Solution structure of the ubiquitin-associated domain of human BMSC-UbP and its complex with ubiquitin. Protein Sci 15:1248–1259CrossRefGoogle Scholar
  5. Cheng Y, Patel DJ (2004) An efficient system for small protein expression and refolding. Biochem Biophys Res Commun 317:401–405CrossRefGoogle Scholar
  6. Christendat D, Yee A, Dharamsi A, Kluger Y, Savchenko A, Cort JR, Booth V, Mackereth CD, Saridakis V, Ekiel I et al (2000) Structural proteomics of an archaeon. Nat Struct Biol 7:903–909CrossRefGoogle Scholar
  7. Davis GD, Elisee C, Newham DM, Harrison RG (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388CrossRefGoogle Scholar
  8. DelProposto J, Majmudar CY, Smith JL, Brown WC (2009) Mocr: a novel fusion tag for enhancing solubility that is compatible with structural biology applications. Protein Expr Purif 63:40–49CrossRefGoogle Scholar
  9. Deshmukh MV, Jones BN, Quang-Dang DU, Flinders J, Floor SN, Kim C, Jemielity J, Kalek M, Darzynkiewicz E, Gross JD (2008) mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol Cell 29:324–336CrossRefGoogle Scholar
  10. di Guan C, Li P, Riggs PD, Inouye H (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67:21–30CrossRefGoogle Scholar
  11. Durst FG, Ou HD, Lohr F, Dotsch V, Straub WE (2008) The better tag remains unseen. J Am Chem Soc 130:14932–14933CrossRefGoogle Scholar
  12. Ferguson BJ, Esposito D, Jovanovic J, Sankar A, Driscoll PC, Mehmet H (2007) Biophysical and cell-based evidence for differential interactions between the death domains of CD95/Fas and FADD. Cell Death Differ 14:1717–1719CrossRefGoogle Scholar
  13. Forrer P, Jaussi R (1998) High-level expression of soluble heterologous proteins in the cytoplasm of Escherichia coli by fusion to the bacteriophage lambda head protein D. Gene 224:45–52CrossRefGoogle Scholar
  14. Golovanov AP, Hautbergue GM, Wilson SA, Lian LY (2004) A simple method for improving protein solubility and long-term stability. J Am Chem Soc 126:8933–8939CrossRefGoogle Scholar
  15. Hammarström M, Hellgren N, van Den Berg S, Berglund H, Hard T (2002) Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 11:313–321CrossRefGoogle Scholar
  16. Hammarström M, Woestenenk EA, Hellgren N, Hard T, Berglund H (2006) Effect of N-terminal solubility enhancing fusion proteins on yield of purified target protein. J Struct Func Genom 7:1–14CrossRefGoogle Scholar
  17. Hargous Y, Hautbergue GM, Tintaru AM, Skrisovska L, Golovanov AP, Stevenin J, Lian LY, Wilson SA, Allain FH (2006) Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8. EMBO J 25:5126–5137CrossRefGoogle Scholar
  18. Hiller S, Kohl A, Fiorito F, Herrmann T, Wider G, Tschopp J, Grutter MG, Wuthrich K (2003) NMR structure of the apoptosis- and inflammation-related NALP1 pyrin domain. Structure 11:1199–1205CrossRefGoogle Scholar
  19. Hornemann S, Christen B, von Schroetter C, Perez DR, Wüthrich K (2009) Prion protein library of recombinant constructs for structural biology. FEBS J 276:2359–2367CrossRefGoogle Scholar
  20. Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW (1996) NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384:638–641CrossRefADSGoogle Scholar
  21. Huth JR, Bewley CA, Jackson BM, Hinnebusch AG, Clore GM, Gronenborn AM (1997) Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR. Protein Sci 6:2359–2364CrossRefGoogle Scholar
  22. Ito T, Wagner G (2004) Using codon optimization, chaperone co-expression, and rational mutagenesis for production and NMR assignments of human eIF2 alpha. J Biomol NMR 28:357–367CrossRefGoogle Scholar
  23. Ito T, Marintchev A, Wagner G (2004) Solution structure of human initiation factor eIF2alpha reveals homology to the elongation factor eEF1B. Structure 12:1693–1704CrossRefGoogle Scholar
  24. Kang J, Kang S, Yoo SH, Park S (2007) Identification of residues participating in the interaction between an intraluminal loop of inositol 1, 4, 5-trisphosphate receptor and a conserved N-terminal region of chromogranin B. Biochim Biophys Acta 1774:502–509Google Scholar
  25. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674CrossRefGoogle Scholar
  26. Kato A, Maki K, Ebina T, Kuwajima K, Soda K, Kuroda Y (2007) Mutational analysis of protein solubility enhancement using short peptide tags. Biopolymers 85:12–18CrossRefGoogle Scholar
  27. Kern R, Malki A, Holmgren A, Richarme G (2003) Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem J 371:965–972CrossRefGoogle Scholar
  28. Kobashigawa Y, Kumeta H, Ogura K, Inagaki F (2009) Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. J Biomol NMR 43:145–150CrossRefGoogle Scholar
  29. LaVallie ER, Lu Z, Diblasio-Smith EA, Collins-Racie LA, McCoy JM (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods Enzymol 326:322–340CrossRefGoogle Scholar
  30. Lepre CA, Moore JM (1998) Microdrop screening: a rapid method to optimize solvent conditions for NMR spectroscopy of proteins. J Biomol NMR 12:493–499CrossRefGoogle Scholar
  31. Li J, Li H, Tsai MD (2003) Direct binding of the N-terminus of HTLV-1 tax oncoprotein to cyclin-dependent kinase 4 is a dominant path to stimulate the kinase activity. Biochemistry 42:6921–6928CrossRefGoogle Scholar
  32. Li H, Byeon IJ, Ju Y, Tsai MD (2004) Structure of human Ki67 FHA domain and its binding to a phosphoprotein fragment from hNIFK reveal unique recognition sites and new views to the structural basis of FHA domain functions. J Mol Biol 335:371–381CrossRefGoogle Scholar
  33. Liu Y, Cherry JJ, Dineen JV, Androphy EJ, Baleja JD (2009) Determinants of stability for the E6 protein of papillomavirus type 16. J Mol Biol 386:1123–1137CrossRefGoogle Scholar
  34. Ludwig C, Michiels PJ, Lodi A, Ride J, Bunce C, Gunther UL (2008) Evaluation of solvent accessibility epitopes for different dehydrogenase inhibitors. Chem Med Chem 3:1371–1376Google Scholar
  35. Mal TK, Takahata S, Ki S, Zheng L, Kokubo T, Ikura M (2007) Functional silencing of TATA-binding protein (TBP) by a covalent linkage of the N-terminal domain of TBP-associated factor 1. J Biol Chem 282:22228–22238CrossRefGoogle Scholar
  36. Marintchev A, Kolupaeva VG, Pestova TV, Wagner G (2003) Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: a new interaction between old partners. Proc Natl Acad Sci USA 100:1535–1540CrossRefADSGoogle Scholar
  37. Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A, Gross JD, Degterev A, Yuan J, Chorev M et al (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128:257–267CrossRefGoogle Scholar
  38. Pilon AL, Yost P, Chase TE, Lohnas GL, Bentley WE (1996) High-level expression and efficient recovery of ubiquitin fusion proteins from Escherichia coli. Biotechnol Prog 12:331–337CrossRefGoogle Scholar
  39. Reibarkh M, Yamamoto Y, Singh CR, del Rio F, Fahmy A, Lee B, Luna RE, Ii M, Wagner G, Asano K (2008) Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J Biol Chem 283:1094–1103CrossRefGoogle Scholar
  40. Safadi SS, Shaw GS (2007) A disease state mutation unfolds the parkin ubiquitin-like domain. Biochemistry 46:14162–14169CrossRefGoogle Scholar
  41. Samuelsson E, Moks T, Nilsson B, Uhlen M (1994) Enhanced in vitro refolding of insulin-like growth factor I using a solubilizing fusion partner. Biochemistry 33:4207–4211CrossRefGoogle Scholar
  42. Schwenk J, Zolles G, Kandias NG, Neubauer I, Kalbacher H, Covarrubias M, Fakler B, Bentrop D (2008) NMR analysis of KChIP4a reveals structural basis for control of surface expression of Kv4 channel complexes. J Biol Chem 283:18937–18946CrossRefGoogle Scholar
  43. Selenko P, Frueh DP, Elsaesser SJ, Haas W, Gygi SP, Wagner G (2008) In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat Struct Mol Biol 15:321–329CrossRefGoogle Scholar
  44. Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40CrossRefGoogle Scholar
  45. Stefl R, Skrisovska L, Xu M, Emeson RB, Allain FH (2005) Resonance assignments of the double-stranded RNA-binding domains of adenosine deaminase acting on RNA 2 (ADAR2). J Biomol NMR 31:71–72CrossRefGoogle Scholar
  46. Stefl R, Xu M, Skrisovska L, Emeson RB, Allain FH (2006) Structure and specific RNA binding of ADAR2 double-stranded RNA binding motifs. Structure 14:345–355CrossRefGoogle Scholar
  47. Stewart EJ, Aslund F, Beckwith J (1998) Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 17:5543–5550CrossRefGoogle Scholar
  48. Sun ZY, Dötsch V, Kim M, Li J, Reinherz EL, Wagner G (1999) Functional glycan-free adhesion domain of human cell surface receptor CD58: design, production and NMR studies. EMBO J 18:2941–2949CrossRefGoogle Scholar
  49. Sun ZJ, Kim KS, Wagner G, Reinherz EL (2001) Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3 epsilon gamma heterodimer. Cell 105:913–923CrossRefGoogle Scholar
  50. Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas T, Plow E, Qin J (2002) A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 110:587–597CrossRefGoogle Scholar
  51. Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320CrossRefGoogle Scholar
  52. Wilkinson DL, Harrison RG (1991) Predicting the solubility of recombinant proteins in Escherichia coli. Bio/technology (Nature Publishing Company) 9:443–448CrossRefGoogle Scholar
  53. Zhou P, Lugovskoy AA, McCarty JS, Li P, Wagner G (2001a) Solution structure of DFF40 and DFF45 N-terminal domain complex and mutual chaperone activity of DFF40 and DFF45. Proc Natl Acad Sci USA 98:6051–6055CrossRefADSGoogle Scholar
  54. Zhou P, Lugovskoy AA, Wagner G (2001b) A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins. J Biomol NMR 20:11–14CrossRefGoogle Scholar
  55. Zhou L, Li J, George R, Ruchaud S, Zhou HG, Ladbury JE, Earnshaw WC, Yuan X (2009) Effects of full-length Borealin on the composition and protein-protein interaction activity of a binary chromosomal passenger complex. Biochemistry 48:1156–1161CrossRefGoogle Scholar
  56. Zou Z, Cao L, Zhou P, Su Y, Sun Y, Li W (2008) Hyper-acidic protein fusion partners improve solubility and assist correct folding of recombinant proteins expressed in Escherichia coli. J Biotechnol 135:333–339CrossRefGoogle Scholar
  57. Züger S, Iwai H (2005) Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat Biotechnol 23:736–740CrossRefGoogle Scholar
  58. Zuo X, Mattern MR, Tan R, Li S, Hall J, Sterner DE, Shoo J, Tran H, Lim P, Sarafianos SG et al (2005) Expression and purification of SARS coronavirus proteins using SUMO-fusions. Protein Expr Purif 42:100–110CrossRefGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  1. 1.Department of BiochemistryDuke University Medical CenterDurhamUSA
  2. 2.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA

Personalised recommendations