Advertisement

Site-specific labeling of proteins with NMR-active unnatural amino acids

  • David H. Jones
  • Susan E. Cellitti
  • Xueshi Hao
  • Qiong Zhang
  • Michael Jahnz
  • Daniel Summerer
  • Peter G. Schultz
  • Tetsuo Uno
  • Bernhard H. Geierstanger
Perspective

Abstract

A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.

Keywords

Site-specific labeling Unnatural amino acids Spin label Metal chelator In-cell NMR 

Notes

Acknowledgments

We thank Huiyong Hu for the synthesis of 15N-labeled o-NBTyr, and Hyun Soo Lee for samples of HQ-Ala.

Supplementary material

10858_2009_9365_MOESM1_ESM.docx (1.4 mb)
(DOCX 1454 kb)

References

  1. Allegrozzi M, Bertini I, Janik MBL, Lee Y-M, Liu G et al (2000) Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 å from the metal ion. J Am Chem Soc 122(17):4154–4161CrossRefGoogle Scholar
  2. Arnesano F, Banci L, Bertini I, Martinelli M, Furukawa Y et al (2004) The unusually stable quaternary structure of human Cu, Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfide status. J Biol Chem 279(46):47998–48003CrossRefGoogle Scholar
  3. Assfalg M, Banci L, Bertini I, Turano P, Vasos PR (2003) Superoxide dismutase folding/unfolding pathway: tole of the metal ions in modulating structural and dynamical features. J Mol Biol 330:145–158CrossRefGoogle Scholar
  4. Banci L, Bertini I, Cantini F, D’Amelio N, Gaggelli E (2006) Human SOD1 before harboring the catalytic metal: soltuion structure of copper-depleted, disulfide-reduced form. J Biol Chem 281(4):2333–2337CrossRefGoogle Scholar
  5. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39(18):5355–5365CrossRefGoogle Scholar
  6. Bloembergen N, Morgan LO (1961) Proton relaxation times in paramagnetic solutions effects of electron spin relaxation. J Chem Phys 34(3):842–850CrossRefADSGoogle Scholar
  7. Breeze AL (2000) Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog NMR Spectrosc 36(4):323–372CrossRefGoogle Scholar
  8. Bromek K, Lee D, Hauhart R, Krych-Goldberg M, Atkinson JP et al (2005) Polychromatic selective population inversion for TROSY experiments with large proteins. J Am Chem Soc 127(1):405–411CrossRefGoogle Scholar
  9. Burz DS, Dutta K, Cowburn D, Shekhtman A (2006a) Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat Methods 3(2):91–93CrossRefGoogle Scholar
  10. Burz DS, Dutta K, Cowburn D, Shekhtman A (2006b) In-cell NMR for protein-protein interactions (STINT-NMR). Nat Protoc 1(1):146–152CrossRefGoogle Scholar
  11. Cellitti SE, Jones DH, Lagpacan L, Hao XS, Zhang Q et al (2008) In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J Am Chem Soc 130(29):9268–9281CrossRefGoogle Scholar
  12. Chen PR, Groff D, Guo J, Ou W, Cellitti S et al (2009) A facile system for encoding unnatural amino acids in mammalian cells. Angew Chem Int Ed Engl 48:4052–4055CrossRefGoogle Scholar
  13. Clore GM, Starich MR, Bewley CA, Cai ML, Kuszewski J (1999) Impact of residual dipolar couplings on the accuracy of NMR structures determined from a minimal number of NOE restraints. J Am Chem Soc 121(27):6513–6514CrossRefGoogle Scholar
  14. Clore GM, Tang C, Iwahara J (2007) Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17(5):603–616CrossRefGoogle Scholar
  15. Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27(6):288–295CrossRefGoogle Scholar
  16. Constantine KL (2001) Evaluation of site-directed spin labeling for characterizing protein-ligand complexes using simulated restraints. Biophys J 81(3):1275–1284CrossRefGoogle Scholar
  17. Danielson MA, Falke JJ (1996) Use of F-19 NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct 25:163–195CrossRefGoogle Scholar
  18. Dedmon MM, Patel CN, Young GB, Pielak GJ (2002) FlgM gains structure in living cells. Proc Natl Acad Sci USA 99(20):12681–12684CrossRefADSGoogle Scholar
  19. Deiters A, Geierstanger BH, Schultz PG (2005) Site-specific in vivo labeling of proteins for NMR studies. ChemBioChem 6(1):55–58CrossRefGoogle Scholar
  20. Deiters A, Groff D, Ryu Y, Xie J, Schultz PG (2006) A genetically encoded photocaged tyrosine. Angew Chem Int Ed Engl 45:2728–2731CrossRefGoogle Scholar
  21. Ellman J, Volkman BF, Mendel D, Schultz PG, Wemmer DE (1992) Site-specific isotopic labeling of proteins for NMR studies. J Am Chem Soc 114(20):7959–7961CrossRefGoogle Scholar
  22. Fesik SW, Zuiderweg ERP (1988) Heteronuclear three-dimensional NMR spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra. J Magn Reson 78:588–593Google Scholar
  23. Fesik SW, Neri P, Meadows R, Olejniczak ET, Gemmecker G (1992) A model of the cyclophilin/cyclosporin A (CSA) complex from NMR and X-ray data suggests that CSA binds as a transition-state analog. J Am Chem Soc 114(8):3165–3166CrossRefGoogle Scholar
  24. Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58:61–97CrossRefGoogle Scholar
  25. Frieden C, Hoeltzli SD, Bann JG (2004) The preparation of 19F-labeled proteins for NMR studies. Methods Enzymol 380:400–415CrossRefGoogle Scholar
  26. Gakh YG, Gakh AA, Gronenborn AM (2000) Fluorine as an NMR probe for structural studies of chemical and biological systems. Magn Reson Chem 38(7):551–558CrossRefGoogle Scholar
  27. Gaponenko V, Howarth JW, Columbus L, Gasmi-Seabrook G, Yuan J et al (2000) Protein global fold determination using site-directed spin and isotope labeling. Protein Sci 9:302–309Google Scholar
  28. Gaponenko V, Sarma SP, Altieri AS, Horita DA, Li J et al (2004) Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. J Biomol NMR 28(3):205–212CrossRefGoogle Scholar
  29. Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406CrossRefGoogle Scholar
  30. Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36(6):1389–1401CrossRefGoogle Scholar
  31. Gerig JT (1994) Fluorine NMR of proteins. Prog Nucl Magn Reson Spectroscopy 26(4):293–370CrossRefGoogle Scholar
  32. Goto NK, Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 10(5):585–592CrossRefGoogle Scholar
  33. Groff D, Thielges MC, Cellitti S, Schultz PG, Romesberg FE (2009) Efforts toward the direct experimental characterization of enzyme microenvironments: tyrosine 100 in dihydrofolate reductase. Angew Chem Int Ed Engl 48:3478–3481CrossRefGoogle Scholar
  34. Gross JD, Gelev VM, Wagner G (2003) A sensitive and robust method for obtaining intermolecular NOEs between side chains in large protein complexes. J Biomol NMR 25(3):235–242CrossRefGoogle Scholar
  35. Guo J, Wang J, Lee JS, Schultz PG (2008) Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. Angewandte Chemie International Ed Eng 47(34):6399–6401CrossRefGoogle Scholar
  36. Hammill JT, Miyake-Stoner S, Hazen JL, Jackson JC, Mehl RA (2007) Preparation of site-specifically labeled fluorinated proteins for F-19-NMR structural characterization. Nat Protoc 2(10):2601–2607CrossRefGoogle Scholar
  37. Hao B, Gong W, Ferguson TK, James CM, Krzycki JA et al (2002) A new UAG-encoded residue in the structure of a methanogen methyltransferase.[see comment]. Science 296(5572):1462–1466CrossRefADSGoogle Scholar
  38. Hubbard JA, MacLachlan LK, King GW, Jones JJ, Fosberry AP (2003) Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli. Mol Microbiol 49(5):1191–1200CrossRefGoogle Scholar
  39. Ikegami T, Verdier L, Sakhaii P, Grimme S, Pescatore B et al (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR 29(3):339–349CrossRefGoogle Scholar
  40. Inomata K, Ohno A, Tochio H, Isogai S, Tenno T et al (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458(7234):106–109CrossRefADSGoogle Scholar
  41. Jackson JC, Hammill JT, Mehl RA (2007) Site-specific incorporation of a (19)F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J Am Chem Soc 129(5):1160–1166CrossRefGoogle Scholar
  42. Jahnke W, Rudisser S, Zurini M (2001) Spin label enhanced NMR screening. J Am Chem Soc 123(13):3149–3150CrossRefGoogle Scholar
  43. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A et al (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440(7080):52–57CrossRefADSGoogle Scholar
  44. Keizers PH, Desreux JF, Overhand M, Ubbink M (2007) Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc 129(30):9292–9293CrossRefGoogle Scholar
  45. Khaneja N, Li JS, Kehlet C, Luy B, Glaser SJ (2004) Broadband relaxation-optimized polarization transfer in magnetic resonance. Proc Natl Acad Sci USA 101(41):14742–14747CrossRefADSGoogle Scholar
  46. Kosen PA (1989) Spin labeling of proteins. Methods Enzymol 177:86–121CrossRefGoogle Scholar
  47. Lampe JN, Floor SN, Gross JD, Nishida CR, Jiang Y et al (2008) Ligand-induced conformational heterogeneity of cytochrome P450 CYP119 identified by 2D NMR spectroscopy with the unnatural amino acid (13)C-p-methoxyphenylalanine. J Am Chem Soc 130(48):16168–16169CrossRefGoogle Scholar
  48. Langen R, Oh KJ, Cascio D, Hubbell WL (2000) Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39(29):8396–8405CrossRefGoogle Scholar
  49. Lee HS, Schultz PG (2008) Biosynthesis of a site-specific DNA cleaving protein. J Am Chem Soc 130(40):13194–13195CrossRefGoogle Scholar
  50. Lee HS, Spraggon G, Schultz PG, Wang F (2009) Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. J Am Chem Soc 131(7):2481–2483CrossRefGoogle Scholar
  51. Lemke EA, Summerer D, Geierstanger BH, Brittain SM, Schultz PG (2007) Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat Chem Biol 3(12):769–772CrossRefGoogle Scholar
  52. Liang B, Bushweller JH, Tamm LK (2006) Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J Am Chem Soc 128(13):4389–4397CrossRefGoogle Scholar
  53. Liu CC, Schultz PG (2006) Recombinant expression of selectively sulfated proteins in Escherichia coli. Nat Biotechnol 24(11):1436–1440CrossRefGoogle Scholar
  54. Liu W, Brock A, Chen S, Chen S, Schultz PG (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods 4(3):239–244zbMATHCrossRefGoogle Scholar
  55. Liu CC, Cellitti S, Geierstanger BH, Schultz PG (2009) Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded code. (submitted)Google Scholar
  56. Luy B (2007) Approaching the megadalton: NMR spectroscopy of protein complexes. Angew Chem Int Ed Engl 46(23):4214–4216CrossRefGoogle Scholar
  57. Markley JL, Putter I, Jardetzk O (1968) High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science 161(3847):1249CrossRefADSGoogle Scholar
  58. McNulty BC, Young GB, Pielak GJ (2006) Macromolecular crowding in the Escherichia coli periplasm maintains alpha-synuclein disorder. J Mol Biol 355(5):893–897CrossRefGoogle Scholar
  59. Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312(5771):224–228CrossRefADSGoogle Scholar
  60. Morgan WD, Birdsall B, Polshakov VI, Sali D, Kompis I et al (1995) Solution structure of a brodimoprim analogue in its complex with Lactobacillus casei dihydrofolate reductase. Biochemistry 34(37):11690–11702CrossRefGoogle Scholar
  61. Muchmore DC, McIntosh LP, Russell CB, Anderson DE, Dahlquist FW (1989) Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol 177:44–73CrossRefGoogle Scholar
  62. Neumann H, Peak-Chew SY, Chin JW (2008) Genetically encoding Ne-acetyllysine in recombinant proteins. Nat Chem Biol epublished.Google Scholar
  63. Otting G (2008) Prospects for lanthanides in structural biology by NMR. J Biomol NMR 42(1):1–9CrossRefGoogle Scholar
  64. Pemble CW, Johnson LC, Kridel SJ, Lowther WT (2007) Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat. Nat Struct Mol Biol 14(8):704–709CrossRefGoogle Scholar
  65. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371CrossRefADSGoogle Scholar
  66. Pintacuda G, Keniry MA, Huber T, Park AY, Dixon NE et al (2004) Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins. J Am Chem Soc 126(9):2963–2970CrossRefGoogle Scholar
  67. Riek R, Wider G, Pervushin K, Wüthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci USA 96(9):4918–4923CrossRefADSGoogle Scholar
  68. Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T et al (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458(7234):102–105CrossRefADSGoogle Scholar
  69. Sambrook J, Russell DW (2001) Molecular cloning, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USAGoogle Scholar
  70. Schultz KC, Supekova L, Ryu YH, Xie JM, Perera R et al (2006) A genetically encoded infrared probe. J Am Chem Soc 128(43):13984–13985CrossRefGoogle Scholar
  71. Selenko P, Wagner G (2006) NMR mapping of protein interactions in living cells. Nat Methods 3(2):80–81CrossRefGoogle Scholar
  72. Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci USA 103(32):11904–11909CrossRefADSGoogle Scholar
  73. Serber Z, Ledwidge R, Miller SM, Dotsch V (2001) Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J Am Chem Soc 123(37):8895–8901CrossRefGoogle Scholar
  74. Serber Z, Straub W, Corsini L, Nomura AM, Shimba N et al (2004) Methyl groups as probes for proteins and complexes in in-cell NMR experiments. J Am Chem Soc 126(22):7119–7125CrossRefGoogle Scholar
  75. Serber Z, Corsini L, Durst F, Dotsch V (2005) In-cell NMR spectroscopy. Methods Enzymol 394:17–41CrossRefGoogle Scholar
  76. Serber Z, Selenko P, Hansel R, Reckel S, Lohr F et al (2006) Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 1(6):2701–2709CrossRefGoogle Scholar
  77. Srinivasan G, James CM, Krzycki JA (2002) Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Science 296(5572):1459–1462CrossRefADSGoogle Scholar
  78. Stockman BJ, Dalvit C (2002) NMR screening techniques in drug discovery and drug design. Prog NMR Spectrosc 41(3–4):187–231CrossRefGoogle Scholar
  79. Su XC, Man B, Beeren S, Liang H, Simonsen S et al (2008) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130(32):10486–10487CrossRefGoogle Scholar
  80. Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins—information for structure determination in solution. Proc Natl Acad Sci USA 92(20):9279–9283CrossRefADSGoogle Scholar
  81. Tsao ML, Summerer D, Ryu YH, Schultz PG (2006) The genetic incorporation of a distance probe into proteins in Escherichia coli. J Am Chem Soc 128(14):4572–4573CrossRefGoogle Scholar
  82. Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. ChemBioChem 6(9):1567–1577CrossRefGoogle Scholar
  83. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125(34):10420–10428CrossRefGoogle Scholar
  84. Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146CrossRefGoogle Scholar
  85. Veldkamp CT, Seibert C, Peterson FC, Sakmar TP, Volkman BF (2006) Recognition of a CXCR4 sulfotyrosine by the chemokine stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12). J Mol Biol 359(5):1400–1409CrossRefGoogle Scholar
  86. Veldkamp CT, Seibert C, Peterson FC, De La Cruz NB, Haugner JCIII et al (2008) Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci Signal 1(37):ra4CrossRefGoogle Scholar
  87. Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292(5516):498–500CrossRefADSGoogle Scholar
  88. Wang L, Xie J, Deniz AA, Schultz PG (2003) Unnatural amino acid mutagenesis of green fluorescent protein. J Org Chem 68(1):174–176CrossRefGoogle Scholar
  89. Wang JY, Xie JM, Schultz PG (2006a) A genetically encoded fluorescent amino acid. J Am Chem Soc 128(27):8738–8739CrossRefGoogle Scholar
  90. Wang L, Xie J, Schultz PG (2006b) Expanding the genetic code. Annu Rev Biophys Biomol Struct 35:225–249CrossRefGoogle Scholar
  91. Wieruszeski JM, Bohin A, Bohin JP, Lippens G (2001) In vivo detection of the cyclic osmoregulated periplasmic glucan of Ralstonia solanacearum by high-resolution magic angle spinning NMR. J Magn Reson 151(1):118–123CrossRefADSGoogle Scholar
  92. Wu N, Deiters A, Cropp TA, King D, Schultz PG (2004) A genetically encoded photocaged amino acid. J Am Chem Soc 126(44):14306–14307CrossRefGoogle Scholar
  93. Wüthrich K (1998) The second decade—into the third millennium. Nat Struct Biol 5(Suppl S):492–495CrossRefGoogle Scholar
  94. Xie J, Schultz PG (2005a) An expanding genetic code. Methods 36(3):227–238CrossRefGoogle Scholar
  95. Xie J, Schultz PG (2005b) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9(6):548–554CrossRefGoogle Scholar
  96. Xie J, Schultz PG (2006) A chemical toolkit for proteins–an expanded genetic code. Nat Rev Mol Cell Biol 7(10):775–782CrossRefGoogle Scholar
  97. Xie J, Wang L, Wu N, Brock A, Spraggon G et al (2004) The site-specific incorporation of p-iodo-l-phenylalanine into proteins for structure determination. Nat Biotechnol 22(10):1297–1301CrossRefGoogle Scholar
  98. Xie JM, Supekova L, Schultz PG (2007a) A genetically encoded metabolically stable analogue of phosphotyrosine in Escherichia coli. Acs Chem Biol 2(7):474–478CrossRefGoogle Scholar
  99. Xie JM, Liu WS, Schultz PG (2007b) A genetically encoded bidentate, metal-binding amino acid. Angew Chem Int Ed Engl 46(48):9239–9242CrossRefGoogle Scholar
  100. Young TS, Ahmad I, Brock A, Schultz PG (2009) Expanding the genetic repertoire of the methylotrophic Yeast Pichia pastoris. Biochemistry 48(12):2643–2653CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • David H. Jones
    • 1
  • Susan E. Cellitti
    • 1
  • Xueshi Hao
    • 1
  • Qiong Zhang
    • 1
  • Michael Jahnz
    • 2
  • Daniel Summerer
    • 2
  • Peter G. Schultz
    • 1
    • 2
  • Tetsuo Uno
    • 1
  • Bernhard H. Geierstanger
    • 1
  1. 1.Genomics Institute of the Novartis Research FoundationSan DiegoUSA
  2. 2.Department of Chemistry and the Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations