Journal of Biomolecular NMR

, Volume 45, Issue 1–2, pp 171–183 | Cite as

Mapping the dynamics of ligand reorganization via 13CH3 and 13CH2 relaxation dispersion at natural abundance

  • Jeffrey W. Peng
  • Brian D. Wilson
  • Andrew T. Namanja
Article

Abstract

Flexible ligands pose challenges to standard structure-activity studies since they frequently reorganize their conformations upon protein binding and catalysis. Here, we demonstrate the utility of side chain 13C relaxation dispersion measurements to identify and quantify the conformational dynamics that drive this reorganization. The dispersion measurements probe methylene 13CH2 and methyl 13CH3 groups; the latter are highly prevalent side chain moieties in known drugs. Combining these side chain studies with existing backbone dispersion studies enables a comprehensive investigation of μs–ms conformational dynamics related to binding and catalysis. We perform these measurements at natural 13C abundance, in congruence with common pharmaceutical research settings. We illustrate these methods through a study of the interaction of a phosphopeptide ligand with the peptidyl-prolyl isomerase, Pin1. The results illuminate the side-chain moieties that undergo conformational readjustments upon complex formation. In particular, we find evidence that multiple exchange processes influence the side chain dispersion profiles. Collectively, our studies illustrate how side-chain relaxation dispersion can shed light on ligand conformational transitions required for activity, and thereby suggest strategies for its optimization.

Keywords

Dynamics Ligand Relaxation dispersion Side-chain Drug-design 

Notes

Acknowledgments

We gratefully acknowledge the National Institutes of Health (NIH-RO1GM083081) for support of this work. We thank Mr. John S. Zintsmaster, Ms. Kimberly A. Wilson, Ms. Bipasha Deb, and Mr. Brian J. McArdle for valuable discussions.

References

  1. Bemis GW, Murcko MA (1996) Properties of known drugs. 1. Molecular frameworks. J Med Chem 39(288):7–2893Google Scholar
  2. Bemis GW, Murcko MA (1999) Properties of known drugs. 2. Side chains. J Med Chem 42(509):5–5099Google Scholar
  3. Berjanskii M, Wishart DS (2006) NMR: prediction of protein flexibility. Nat Protoc 1:683–688CrossRefGoogle Scholar
  4. Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw Hill, New York CityGoogle Scholar
  5. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638CrossRefADSGoogle Scholar
  6. Carver JP, Richards RE (1972) A general two-site solution for the chemical exchange produced dependence of T2 upon the Carr-Purcell Pulse separation. J Magn Reson 6:89–105Google Scholar
  7. Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci U S A 104:9615–9620CrossRefADSGoogle Scholar
  8. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302CrossRefGoogle Scholar
  9. Crenshaw DG, Yang J, Means AR, Kornbluth S (1998) The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J 17:1315–1327CrossRefGoogle Scholar
  10. Davis DG, Perlman ME, London RE (1994) Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T and T2(CPMG) methods. J Magn Reson Ser B 104(26):6–275Google Scholar
  11. de Dios AC, Pearson JG, Oldfield E (1993) Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260:1491–1496CrossRefADSGoogle Scholar
  12. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions, Chapter 9, Section 9.3.1. Oxford Science Publications, OxfordGoogle Scholar
  13. Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141Google Scholar
  14. Grey MJ, Wang C, Palmer AG 3rd (2003) Disulfide bond isomerization in basic pancreatic trypsin inhibitor: multisite chemical exchange quantified by CPMG relaxation dispersion and chemical shift modeling. J Am Chem Soc 125:14324–14335CrossRefGoogle Scholar
  15. Hong M, Mishanina TV, Cady SD (2009) Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: the influenza a M2 transmembrane peptide as an example. J Am Chem Soc 131:7806–7816CrossRefGoogle Scholar
  16. Ishima R, Torchia DA (1999) Estimating the time scale of chemical exchange of proteins from measurements of transverse relaxation rates in solution. J Biomol NMR 14(36):9–372Google Scholar
  17. King NM, Prabu-Jeyabalan M, Nalivaika EA, Schiffer CA (2004) Combating susceptibility to drug resistance: lessons from HIV-1 protease. Chem Biol 11:1333–1338Google Scholar
  18. Labeikovsky W, Eisenmesser EZ, Bosco DA, Kern D (2007) Structure and dynamics of pin1 during catalysis by NMR. J Mol Biol 367:1370–1381CrossRefGoogle Scholar
  19. London RE, Wingad BD, Mueller GA (2008) Dependence of amino acid side chain 13C shifts on dihedral angle: application to conformational analysis. J Am Chem Soc 130:11097–11105CrossRefGoogle Scholar
  20. Loria JP, Rance M, Palmer AG 3rd (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121:2331–2332CrossRefGoogle Scholar
  21. Lu KP, Finn G, Lee TH, Nicholson LK (2007) Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 3:619–629CrossRefGoogle Scholar
  22. Lundström P, Vallurupalli P, Religa TL, Dahlquist FW, Kay LE (2007) A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity. J Biomol NMR 38:79–88CrossRefGoogle Scholar
  23. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instr 29:688–691CrossRefADSGoogle Scholar
  24. Millet O, Loria JP, Kroenke CD, Pons M, Palmer AGIII (2000) The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J Am Chem Soc 122:2867–2877CrossRefGoogle Scholar
  25. Mulder FAA, de Graaf RA, Kaptein R, Boelens R (1998) An off-resonance rotating frame relaxation experiment for the investigation of macromolecular dynamics using adiabatic rotations. J Magn Reson 131:351–357CrossRefADSGoogle Scholar
  26. Mulder FA, Mittermaier A, Hon B, Dahlquist FW, Kay LE (2001a) Studying excited states of proteins by NMR spectroscopy. Nat Struct Biol 8:932–935CrossRefGoogle Scholar
  27. Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE (2001b) Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:967–975CrossRefGoogle Scholar
  28. Namanja AT (2009) Molecular basis for signal transduction in the bi-modular cell-cycle enzyme Pin1. Dissertation, University of Notre DameGoogle Scholar
  29. Namanja AT, Peng T, Zintsmaster JS, Elson AC, Shakour MG, Peng JW (2007) Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1. Structure 15:313–327CrossRefGoogle Scholar
  30. Navia MA, Chaturvedi PR (1996) Design principles for orally bioavailable drugs. Drug Discov Today 1(17):9–189Google Scholar
  31. Peng JW (2003) New probes of ligand flexibility in drug design: transferred (13)C CSA-dipolar cross-correlated relaxation at natural abundance. J Am Chem Soc 125:11116–11130CrossRefGoogle Scholar
  32. Perni RB, Chandorkar G, Cottrell KM, Gates CA, Lin C, Lin K, Luong YP, Maxwell JP, Murcko MA, Pitlik J, Rao G, Schairer WC, Van Drie J, Wei Y (2007) Inhibitors of hepatitis C virus NS3.4A protease. Effect of P4 capping groups on inhibitory potency and pharmacokinetics. Bioorg Med Chem Lett 17:3406–3411CrossRefGoogle Scholar
  33. Perola E, Charifson PS (2004) Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J Med Chem 47:2499–2510CrossRefGoogle Scholar
  34. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A 105:4685–4690CrossRefADSGoogle Scholar
  35. Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Ca and Cb 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492CrossRefGoogle Scholar
  36. van Drie JH (2003) Pharmacophore discovery–lessons learned. Curr Pharm Des 9:1649–1664CrossRefGoogle Scholar
  37. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623CrossRefGoogle Scholar
  38. Verdecia MA, Bowman ME, Lu KP, Hunter T, Noel JP (2000) Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 7:639–643CrossRefGoogle Scholar
  39. Vila JA, Scheraga HA (2008) Factors affecting the use of 13C(alpha) chemical shifts to determine, refine, and validate protein structures. Proteins 71:641–654CrossRefGoogle Scholar
  40. Wintjens R, Wieruszeski JM, Drobecq H, Rousselot-Pailley P, Buee L, Lippens G, Landrieu I (2001) 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides. J Biol Chem 276:25150–25156CrossRefGoogle Scholar
  41. Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180CrossRefGoogle Scholar
  42. Xu XP, Case DA (2002) Probing multiple effects on 15 N, 13C alpha, 13C beta, and 13C’ chemical shifts in peptides using density functional theory. Biopolymers 65:408–423CrossRefGoogle Scholar
  43. Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, Kullertz G, Stark M, Fischer G, Lu KP (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 6:873–883CrossRefGoogle Scholar
  44. Zintsmaster JS, Wilson BD, Peng JW (2008) Dynamics of ligand binding from 13C NMR relaxation dispersion at natural abundance. J Am Chem Soc 130:14060–14061CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jeffrey W. Peng
    • 1
  • Brian D. Wilson
    • 1
  • Andrew T. Namanja
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA

Personalised recommendations