Journal of Biomolecular NMR

, Volume 45, Issue 1–2, pp 5–8 | Cite as

Monitoring conformational dynamics with solid-state R experiments

  • Caitlin M. Quinn
  • Ann E. McDermott


A new application of solid-state rotating frame (R ) relaxation experiments to observe conformational dynamics is presented. Studies on a model compound, dimethyl sulfone (DMS), show that R relaxation due to reorientation of a chemical shift anisotropy (CSA) tensor undergoing chemical exchange can be used to monitor slow-to-intermediate timescale conformational exchange processes. Control experiments used d 6 -DMS and alanine to confirm that the technique is monitoring reorientation of the CSA tensor rather than dipolar interactions or methyl group rotation. The application of this method to proteins could represent a new site-specific probe of conformational dynamics.


Rotating frame relaxation Chemical shift anisotropy Molecular dynamics Chemical exchange Dimethyl sulfone 

Supplementary material

10858_2009_9346_MOESM1_ESM.doc (94 kb)
Supplementary material 1 (DOC 93 kb)


  1. Akasaka K, Ganapathy S, McDowell CA, Naito A (1983) Spin-spin and spin-lattice contributions to the rotating frame relaxation of 13C in l-alanine. J Chem Phys 78:3567–3572CrossRefADSGoogle Scholar
  2. Boehr DD, Dyson HJ, Wright PE (2006) An NMR perspective on enzyme dynamics. Chem Rev 106:3055–3079CrossRefGoogle Scholar
  3. Brown MJ, Vold RL, Hoatson GL (1996) Selective inversion investigations of slow molecular motion in solid state deuteron NMR spectroscopy. Solid State NMR 6:167–185CrossRefGoogle Scholar
  4. Chevelkov V, Faelber K, Schrey A, Rehbein K, Diehl A, Reif B (2007) Differential line broadening in MAS solid-state NMR due to dynamic interference. J Am Chem Soc 129:10195–10200CrossRefGoogle Scholar
  5. deAzevedo ER, Hu WG, Bonagamba TJ, Schmidt-Rohr K (2000) Principles of centerband-only detection of exchange in solid-state nuclear magnetic resonance, and extension to four-time centerband-only detection of exchange. J Chem Phys 112:8988–9001CrossRefADSGoogle Scholar
  6. Farès C, Qian J, Davis JH (2005) Magic angle spinning and static oriented sample NMR studies of the relaxation in the rotating frame of membrane peptides. J Chem Phys 122:194908–194924CrossRefADSGoogle Scholar
  7. Gan Z, Grant DM (1990) Rotational resonance in a spin-lock field for solid state NMR. Chem Phys Lett 168:304–308CrossRefADSGoogle Scholar
  8. Gérardy-Montouillout V, Malveau C, Tekely P, Olender Z, Luz Z (1996) ODESSA, a new 1D NMR exchange experiment for chemically equivalent nuclei in rotating solids. J Magn Reson A 123:7–15CrossRefGoogle Scholar
  9. Korzhnev DM, Orekhov VY, Dahlquist FW, Kay LE (2003) Off-resonance R relaxation outside of the fast exchange limit: an experimental study of a cavity mutant of T4 lysozyme. J Biomol NMR 26:39–48CrossRefGoogle Scholar
  10. Krushelnitsky A, Reichert D (2005) Solid-state NMR and protein dynamics. Prog NMR Spectrosc 47:1–25CrossRefGoogle Scholar
  11. Krushelnitsky A, Kurbanov R, Reichert G, Hempel G, Schneider H, Fedotov V (2002) Expanding the frequency range of the solid state T experiment for heteronuclear dipolar relaxation. Solid State NMR 22:423–438CrossRefGoogle Scholar
  12. Long JR, Sun BQ, Bowen A, Griffin RG (1994) Molecular dynamics and magic angle spinning NMR. J Am Chem Soc 116:11950–11956CrossRefGoogle Scholar
  13. Loria JP, Berlow RB, Watt ED (2008) Characterization of enzyme motions by solution NMR relaxation dispersion. Acc Chem Res 41:214–221CrossRefGoogle Scholar
  14. Lundström P, Akke M (2005) Microsecond protein dynamics measured by 13Cα rotating-frame spin relaxation. Chembiochem 6:1685–1692CrossRefGoogle Scholar
  15. Massi F, Grey MJ, Palmer AG (2004) Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R relaxation experiments. Protein Sci 14:735–742CrossRefGoogle Scholar
  16. Mulder FAA, van Tilborg PJA, Kaptein R, Boelens R (1999) Microsecond timescale dynamics in the RXR DNA-binding domain from a combination of spin-echo and off-resonance rotating frame relaxation measurements. J Biomol NMR 13:275–288CrossRefGoogle Scholar
  17. Palmer AG, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolcules. Methods Enzymol 339:204–238CrossRefGoogle Scholar
  18. Solum MS, Zilm KW, Michl J, Grant DM (1983) Carbon-13 line shape study of two-site exchange in solid dimethyl sulfone. J Phys Chem 87:2940–2944CrossRefGoogle Scholar
  19. Veshtort M, Griffin RG (2006) SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. J Magn Reson 178:248–282CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of ChemistryColumbia UniversityNew YorkUSA

Personalised recommendations