Advertisement

Journal of Biomolecular NMR

, Volume 44, Issue 4, pp 261–272 | Cite as

Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system

  • Teppei Ikeya
  • Mitsuhiro Takeda
  • Hitoshi Yoshida
  • Tsutomu Terauchi
  • Jun-Goo Jee
  • Masatsune Kainosho
  • Peter Güntert
Article

Abstract

Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional “through-bond” spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83–1.15 Å for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.

Keywords

Automated structure determination CYANA FLYA SAIL Structure validation 

Notes

Acknowledgments

We thank Dr. Akira Mei Ono for help in preparing the SAIL amino acids. We gratefully acknowledge financial support by a Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS), and from the CREST program of the Japan Science and Technology Agency (JST), the Technology Development for Protein Analyses and Targeted Protein Research Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Lichtenberg program of the Volkswagen Foundation.

References

  1. Baran MC, Huang YJ, Moseley HNB, Montelione GT (2004) Automated analysis of protein NMR assignments and structures. Chem Rev 104:3541–3555CrossRefGoogle Scholar
  2. Bartels C, Billeter M, Güntert P, Wüthrich K (1996) Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. J Biomol NMR 7:207–213CrossRefGoogle Scholar
  3. Bartels C, Güntert P, Billeter M, Wüthrich K (1997) GARANT—a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comput Chem 18:139–149CrossRefGoogle Scholar
  4. Billeter M, Wagner G, Wüthrich K (2008) Solution NMR structure determination of proteins revisited. J Biomol NMR 42:155–158CrossRefGoogle Scholar
  5. Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known 3-dimensional structure. Science 253:164–170CrossRefADSGoogle Scholar
  6. Brünger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475CrossRefADSGoogle Scholar
  7. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  8. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302CrossRefGoogle Scholar
  9. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe—a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  10. Gronwald W, Kalbitzer HR (2004) Automated structure determination of proteins by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 44:33–96CrossRefGoogle Scholar
  11. Güntert P (2003) Automated NMR protein structure calculation. Prog Nucl Magn Reson Spectrosc 43:105–125CrossRefGoogle Scholar
  12. Güntert P (2009) Automated structure determination from NMR spectra. Eur Biophys J 38:129–143CrossRefGoogle Scholar
  13. Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298CrossRefGoogle Scholar
  14. Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227CrossRefGoogle Scholar
  15. Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881CrossRefADSGoogle Scholar
  16. Hooft RWW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272CrossRefADSGoogle Scholar
  17. Ikeya T, Terauchi T, Güntert P, Kainosho M (2006) Evaluation of stereo-array isotope labeling (SAIL) patterns for automated structural analysis of proteins with CYANA. Magn Reson Chem 44:S152–S157CrossRefGoogle Scholar
  18. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Meth Mol Biol 278:313–352Google Scholar
  19. Johnson BA, Blevins RA (1994) NMR view—a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614CrossRefGoogle Scholar
  20. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57CrossRefADSGoogle Scholar
  21. Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55CrossRefGoogle Scholar
  22. Koradi R, Billeter M, Güntert P (2000) Point-centered domain decomposition for parallel molecular dynamics simulation. Comput Phys Commun 124:139–147zbMATHCrossRefADSGoogle Scholar
  23. Kraulis PJ (1989) ANSIG: a program for the assignment of protein 1H 2D NMR spectra by interactive computer graphics. J Magn Reson 84:627–633Google Scholar
  24. Kraulis PJ, Domaille PJ, Campbell-Burk SL, Van Aken T, Laue ED (1994) Solution structure and dynamics of Ras p21-GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 33:3515–3531CrossRefGoogle Scholar
  25. Kupče E, Freeman R (2008) Hyperdimensional NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 52:22–30CrossRefGoogle Scholar
  26. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486CrossRefGoogle Scholar
  27. Linge JP, O’Donoghue SI, Nilges M (2001) Automated assignment of ambiguous nuclear overhauser effects with ARIA. Methods Enzymol 339:71–90CrossRefGoogle Scholar
  28. López-Méndez B, Güntert P (2006) Automated protein structure determination from NMR spectra. J Am Chem Soc 128:13112–13122CrossRefGoogle Scholar
  29. Luan T, Jaravine V, Yee A, Arrowsmith CH, Orekhov VY (2005) Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J Biomol NMR 33:1–14CrossRefGoogle Scholar
  30. Luginbühl P, Güntert P, Billeter M, Wüthrich K (1996) The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules. J Biomol NMR 8:136–146CrossRefGoogle Scholar
  31. Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with 3-dimensional profiles. Nature 356:83–85CrossRefADSGoogle Scholar
  32. Malmodin D, Billeter M (2005) High-throughput analysis of protein NMR spectra. Prog Nucl Magn Reson Spectrosc 46:109–129CrossRefGoogle Scholar
  33. Malmodin D, Papavoine CHM, Billeter M (2003) Fully automated sequence-specific resonance assignments of heteronuclear protein spectra. J Biomol NMR 27:69–79CrossRefGoogle Scholar
  34. Morris AL, Macarthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12:345–364CrossRefGoogle Scholar
  35. Nabuurs SB, Spronk CAEM, Vuister GW, Vriend G (2006) Traditional biomolecular structure determination by NMR spectroscopy allows for major errors. PLoS Comput Biol 2:71–79CrossRefGoogle Scholar
  36. Pfändler P, Bodenhausen G, Meier BU, Ernst RR (1985) Toward automated assignment of nuclear magnetic resonance spectra—pattern recognition in two-dimensional correlation spectra. Anal Chem 57:2510–2516CrossRefGoogle Scholar
  37. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85CrossRefGoogle Scholar
  38. Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Wälchli M, Smith BO, Shirakawa M, Güntert P, Ito Y (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105CrossRefADSGoogle Scholar
  39. Schultze P, Feigon J (1997) Chirality errors in nucleic acid structures. Nature 387:668CrossRefADSGoogle Scholar
  40. Scott A, López-Méndez B, Güntert P (2006) Fully automated structure determinations of the Fes SH2 domain using different sets of NMR spectra. Magn Reson Chem 44:S83–S88CrossRefGoogle Scholar
  41. Sippl MJ (1993) Recognition of errors in 3-dimensional structures of proteins. Proteins 17:355–362CrossRefGoogle Scholar
  42. Spronk C, Nabuurs SB, Krieger E, Vriend G, Vuister GW (2004) Validation of protein structures derived by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 45:315–337CrossRefGoogle Scholar
  43. Szyperski T, Atreya HS (2006) Principles and applications of GFT projection NMR spectroscopy. Magn Reson Chem 44:S51–S60CrossRefGoogle Scholar
  44. Takeda M, Ikeya T, Güntert P, Kainosho M (2007) Automated structure determination of proteins with the SAIL-FLYA NMR method. Nat Protoc 2:2896–2902CrossRefGoogle Scholar
  45. Takeda M, Sugimori N, Torizawa T, Terauchi T, Ono AM, Yagi H, Yamaguchi Y, Kato K, Ikeya T, Jee J, Güntert P, Aceti DJ, Markley JL, Kainosho M (2008) Structure of the putative 32 kDa myrosinase-binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR. FEBS J 275:5873–5884CrossRefGoogle Scholar
  46. Terauchi T, Kobayashi K, Okuma K, Oba M, Nishiyama K, Kainosho M (2008) Stereoselective synthesis of triply isotope-labeled Ser, Cys, and Ala: amino acids for stereoarray isotope labeling technology. Org Lett 10:2785–2787CrossRefGoogle Scholar
  47. Torizawa T, Shimizu M, Taoka M, Miyano H, Kainosho M (2004) Efficient production of isotopically labeled proteins by cell-free synthesis: a practical protocol. J Biomol NMR 30:311–325CrossRefGoogle Scholar
  48. Torizawa T, Ono AM, Terauchi T, Kainosho M (2005) NMR assignment methods for the aromatic ring resonances of phenylalanine and tyrosine residues in proteins. J Am Chem Soc 127:12620–12626CrossRefGoogle Scholar
  49. Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086CrossRefGoogle Scholar
  50. Williamson MP, Craven CJ (2009) Automated protein structure calculation from NMR data. J Biomol NMR 43:131–143CrossRefGoogle Scholar
  51. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Teppei Ikeya
    • 1
    • 2
    • 3
  • Mitsuhiro Takeda
    • 3
    • 4
  • Hitoshi Yoshida
    • 3
  • Tsutomu Terauchi
    • 3
  • Jun-Goo Jee
    • 3
  • Masatsune Kainosho
    • 3
    • 4
  • Peter Güntert
    • 1
    • 2
    • 3
  1. 1.Institute of Biophysical Chemistry, Center for Biomolecular Magnetic ResonanceGoethe University Frankfurt am MainFrankfurt am MainGermany
  2. 2.Frankfurt Institute for Advanced StudiesGoethe University Frankfurt am MainFrankfurt am MainGermany
  3. 3.Graduate School of ScienceTokyo Metropolitan UniversityTokyoJapan
  4. 4.Graduate School of ScienceNagoya UniversityChikusa-ku, NagoyaJapan

Personalised recommendations