Journal of Biomolecular NMR

, Volume 44, Issue 4, pp 235–244 | Cite as

Numerical design of RNnν symmetry-based RF pulse schemes for recoupling and decoupling of nuclear spin interactions at high MAS frequencies

  • Christian Herbst
  • Jirada Herbst
  • Jörg Leppert
  • Oliver Ohlenschläger
  • Matthias Görlach
  • Ramadurai Ramachandran
Article

Abstract

An approach for the efficient implementation of RNnν symmetry-based pulse schemes that are often employed for recoupling and decoupling of nuclear spin interactions in biological solid state NMR investigations is demonstrated at high magic-angle spinning frequencies. RF pulse sequences belonging to the RNnν symmetry involve the repeated application of the pulse sandwich {RϕR−ϕ}, corresponding to a propagator URF = exp(−i4ϕIz), where ϕ = πν/N and R is typically a pulse that rotates the nuclear spins through 180° about the x-axis. In this study, broadband, phase-modulated 180° pulses of constant amplitude were employed as the initial ‘R’ element and the phase-modulation profile of this ‘R’ element was numerically optimised for generating RNnν symmetry-based pulse schemes with satisfactory magnetisation transfer characteristics. At representative MAS frequencies, RF pulse sequences were implemented for achieving 13C–13C double-quantum dipolar recoupling and through bond scalar coupling mediated chemical shift correlation and evaluated via numerical simulations and experimental measurements. The results from these investigations are presented here.

Keywords

MAS Solid state NMR Chemical shift correlation Symmetry-based RF pulse schemes 

Supplementary material

References

  1. Agarwal V, Reif B (2008) Residual methyl protonation in perdeuterated proteins for multi-dimensional correlation experiments in MAS solid-state NMR spectroscopy. J Magn Reson 194:16–24CrossRefADSGoogle Scholar
  2. Bak M, Nielsen NC (1997) REPULSION, a novel approach to efficient powder averaging in solid state NMR. J Magn Reson 125:132–139CrossRefADSGoogle Scholar
  3. Baldus M (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog Nucl Magn Reson Spectrosc 41:1–47CrossRefGoogle Scholar
  4. Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Magn Reson A 121:65–69CrossRefGoogle Scholar
  5. Bennett AE, Griffin RG, Vega S (1994) NMR basic principles and progress, vol 33. Springer, Berlin, pp 1–77Google Scholar
  6. Carravetta M, Eden M, Zhao X, Brinkmann A, Levitt MH (2000) Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids. Chem Phys Lett 321:205–215CrossRefADSGoogle Scholar
  7. Carravetta M, Eden M, Johannessen OG, Luthman H, Verdegem PJE, Lugtenburg J, Sebald A, Levitt MH (2001) Estimation of carbon–carbon bond lengths and medium-range internuclear distances by solid-state nuclear magnetic resonance. J Am Chem Soc 123:10628–10638CrossRefGoogle Scholar
  8. Chan JCC, Brunklaus G (2001) R sequences for the scalar-coupling mediated homonuclear correlation spectroscopy under fast magic-angle spinning. Chem Phys Lett 349:104–112CrossRefADSGoogle Scholar
  9. Cheng VB, Suzukawa HH, Wolfsberg M (1973) Investigations of a nonrandom numerical method for multidimensional integration. J Chem Phys 59:3992–3999CrossRefADSMathSciNetGoogle Scholar
  10. De Paepe G, Lesage A, Emsley L (2003) The performance of phase modulated heteronuclear dipolar decoupling schemes in fast magic-angle-spinning nuclear magnetic resonance experiments. J Chem Phys 119:4833–4841CrossRefADSGoogle Scholar
  11. Detken A, Hardy EH, Ernst M, Kainosho M, Kawakami T, Aimoto S, Meier BH (2001) Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: quantification and application to antamanide. J Biomol NMR 20:203–221CrossRefGoogle Scholar
  12. Dusold S, Sebald A (2000) Dipolar recoupling under magic-angle spinning conditions. Annu Rep NMR Spectrosc 41:185–264CrossRefGoogle Scholar
  13. Forrest S (1993) Genetic algorithms—principles of natural-selection applied to computation. Science 261:872–878CrossRefADSGoogle Scholar
  14. Freeman R, Wu XL (1987) Design of magnetic resonance experiments by genetic evolution. J Magn Reson 75:184–189Google Scholar
  15. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101CrossRefADSGoogle Scholar
  16. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley publishing company, MassachusettsMATHGoogle Scholar
  17. Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nat Struct Biol 5:508–512CrossRefGoogle Scholar
  18. Hardy EH, Detken A, Meier BH (2003) Fast-MAS total through-bond correlation spectroscopy using adiabatic pulses. J Magn Reson 165:208–218CrossRefADSGoogle Scholar
  19. Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley-Interscience, HobokenMATHGoogle Scholar
  20. Heindrichs ASD, Geen H, Giordani C, Titman JJ (2001) Improved scalar shift correlation NMR spectroscopy in solids. Chem Phys Lett 335:89–96CrossRefADSGoogle Scholar
  21. Herbst C, Herbst J, Kirschstein A, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2009) Design of high-power, broadband 180° pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy. J Biomol NMR 43:51–61CrossRefGoogle Scholar
  22. Judson R (1997) Genetic algorithms and their use in chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 10. VCH Publishers, New York, pp 1–73Google Scholar
  23. Kristiansen PK, Mitchell D, Evans JNS (2002) Double-quantum dipolar recoupling at high magic-angle spinning rates. J Magn Reson 157:253–266CrossRefADSGoogle Scholar
  24. Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2004) Adiabatic TOBSY in rotating solids. J Biomol NMR 29:167–173CrossRefGoogle Scholar
  25. Levitt MH (2002) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance. Wiley, ChichesterGoogle Scholar
  26. Riedel K, Herbst C, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2007) Broadband homonuclear chemical shift correlation at high MAS frequencies: a study of tanh/tan adiabatic RF pulse schemes without 1H decoupling during mixing. J Biomol NMR 37:277–286CrossRefGoogle Scholar
  27. Veshtort M, Griffin RG (2006) Spinevolution: a powerful tool for the simulation of solid and liquid state NMR experiments. J Magn Reson 178:248–282CrossRefADSGoogle Scholar
  28. Wall M (1996) GAlib: A C++ library of genetic algorithm components, version 2.4.7Google Scholar
  29. Wu XL, Freeman R (1989) Darwin’s ideas applied to magnetic resonance. The marriage broker. J Magn Reson 85:414–420Google Scholar
  30. Xu P, Wu XL, Freeman R (1992) User-friendly selective pulses. J Magn Reson 99:308–322Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Christian Herbst
    • 1
  • Jirada Herbst
    • 2
  • Jörg Leppert
    • 1
  • Oliver Ohlenschläger
    • 1
  • Matthias Görlach
    • 1
  • Ramadurai Ramachandran
    • 1
  1. 1.Research group Biomolecular NMR spectroscopy, Leibniz Institute for Age ResearchFritz Lipmann InstituteJenaGermany
  2. 2.Department of Mathematics, Statistics and Computer, Faculty of ScienceUbon Ratchathani UniversityUbon RatchathaniThailand

Personalised recommendations