Journal of Biomolecular NMR

, Volume 43, Issue 1, pp 51–61 | Cite as

Design of high-power, broadband 180° pulses and mixing sequences for fast MAS solid state chemical shift correlation NMR spectroscopy

  • Christian Herbst
  • Jirada Herbst
  • Anika Kirschstein
  • Jörg Leppert
  • Oliver Ohlenschläger
  • Matthias Görlach
  • Ramadurai RamachandranEmail author


An approach for the design of high-power, broadband 180° pulses and mixing sequences for generating dipolar and scalar coupling mediated 13C–13C chemical shift correlation spectra of isotopically labelled biological systems at fast magic-angle spinning frequencies without 1H decoupling during mixing is presented. Considering RF field strengths in the range of 100–120 kHz, as typically available in MAS probes employed at high spinning speeds, and limited B 1 field inhomogeneities, the Fourier coefficients defining the phase modulation profile of the RF pulses were optimised numerically to obtain broadband inversion and refocussing pulses and mixing sequences. Experimental measurements were carried out to assess the performance characteristics of the mixing sequences reported here.


Dipolar Coupling Inversion Pulse Chemical Shift Correlation Refocus Pulse Adiabatic Inversion Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has been funded in part by a grant from the Deutsche Forschungsgemeinschaft (GO474/6-1). The FLI is a member of the Science Association “Gottfried Wilhelm Leibniz” (WGL) and is financially supported by the Federal Government of Germany and the State of Thuringia. We would like to thank the referees for their useful comments on the original manuscript.


  1. Bak M, Nielsen NC (1997) REPULSION, a novel approach to efficient powder averaging in solid state NMR. J Magn Reson 125:132–139CrossRefADSGoogle Scholar
  2. Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Magn Reson A 121:65–69CrossRefGoogle Scholar
  3. Bayro MJ, Ramachandran R, Caporini MA, Eddy MT, Griffin RG (2008) Radio frequency-driven recoupling at high magic-angle spinning frequencies: homonuclear recoupling sans heteronuclear decoupling. J Chem Phys 128:052321CrossRefADSGoogle Scholar
  4. Bennett AE, Ok JH, Griffin RG, Vega S (1992) Chemical shift correlation spectroscopy in rotating solids: radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96:8624–8627CrossRefADSGoogle Scholar
  5. Bennett AE, Rienstra CM, Griffiths JM, Zhen W, Lansbury PT, Griffin RG (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463–9479CrossRefADSGoogle Scholar
  6. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102CrossRefADSGoogle Scholar
  7. Cheng VB, Suzukawa HH, Wolfsberg M (1973) Investigations of a nonrandom numerical method for multidimensional integration. J Chem Phys 59:3992–3999CrossRefADSMathSciNetGoogle Scholar
  8. Detken A, Hardy EH, Ernst M, Kainosho M, Kawakami T, Aimoto S, Meier BH (2001) Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: quantification and application to antamanide. J Biomol NMR 20:203–221CrossRefGoogle Scholar
  9. De Paepe G, Bayro MJ, Lewandowski J, Griffin RG (2005) Broadband homonuclear correlation spectroscopy at high magnetic fields and MAS frequencies. J Am Chem Soc 128:1776–1777CrossRefGoogle Scholar
  10. Ernst M, Detken A, Bockmann A, Meier BH (2003) NMR spectra of a microcrystalline protein at 30 kHz MAS. J Am Chem Soc 125:15807–15810CrossRefGoogle Scholar
  11. Forrest S (1993) Genetic algorithms—principles of natural-selection applied to computation. Science 261:872–878CrossRefADSGoogle Scholar
  12. Freeman R, Wu XL (1987) Design of magnetic resonance experiments by genetic evolution. J Magn Reson 75:184–189Google Scholar
  13. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley publishing company, MassachusettszbMATHGoogle Scholar
  14. Goldbourt A, Gross BJ, Day LA, McDermott AE (2007) Filamentous phage studied by magic-angle spinning NMR: resonance assignment and secondary structure of the coat protein in Pf1. J Am Chem Soc 129:2338–2344CrossRefGoogle Scholar
  15. Gullion T, Baker DB, Conradi MS (1990) New, compensated Carr-Purcell sequences. J Magn Reson 89:479–484Google Scholar
  16. Hardy EH, Detken A, Meier BH (2003) Fast-MAS total through-bond correlation spectroscopy using adiabatic pulses. J Magn Reson 165:208–218CrossRefADSGoogle Scholar
  17. Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley-Interscience, Hoboken, New JerseyzbMATHGoogle Scholar
  18. Heindrichs ASD, Geen H, Giordani C, Titman JJ (2001) Improved scalar shift correlation NMR spectroscopy in solids. Chem Phys Lett 335:89–96CrossRefADSGoogle Scholar
  19. Herbst C, Riedel K, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2007) 13C–13C chemical shift correlation in rotating solids without 1H decoupling during mixing: an assessment of amplitude and phase-modulated adiabatic RF pulse schemes. Chem Phys Chem 8:1770–1773Google Scholar
  20. Hughes CE, Luca S, Baldus M (2004) Radio-frequency driven polarization transfer without heteronuclear decoupling in rotating solids. Chem Phys Lett 385:435–440CrossRefADSGoogle Scholar
  21. Ishii Y (2001) 13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114:8473–8483CrossRefADSGoogle Scholar
  22. Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci USA 99:16748–16753CrossRefADSGoogle Scholar
  23. Judson R (1997) Genetic algorithms and their use in chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 10. VCH Publishers, New York, pp 1–73Google Scholar
  24. Kirschstein A, Herbst C, Riedel K, Carella M, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2008a) Broadband homonuclear TOCSY with amplitude and phase-modulated RF mixing schemes. J Biomol NMR 40:227–237CrossRefGoogle Scholar
  25. Kirschstein A, Herbst C, Riedel K, Carella M, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2008b) Heteronuclear J cross-polarisation in liquids using amplitude and phase modulated mixing sequences. J Biomol NMR 40:277–283CrossRefGoogle Scholar
  26. Kobzar K, Skinner TE, Khaneja N, Glaser SJ, Luy B (2004) Exploring the limits of broadband excitation and inversion pulses. J Magn Reson 170:236–243CrossRefADSGoogle Scholar
  27. Krabben L, van Rossum BJ, Castellani F, Bocharov E, Schulga AA, Arseniev AS, Weise C, Hucho F, Oschkinat H (2004) Towards structure determination of neurotoxin II bound to nicotinic acetylcholine receptor: a solid state NMR approach. FEBS Lett 564:319–324CrossRefGoogle Scholar
  28. Leppert J, Heise B, Ohlenschläger O, Görlach M, Ramachandran R (2003) Broadband RFDR with adiabatic inversion pulses. J Biomol NMR 26:13–24CrossRefGoogle Scholar
  29. Leppert J, Urbinati CR, Häfner S, Ohlenschläger O, Swanson MS, Görlach M, Ramachandran R (2004) Identification of NH…N hydrogen bonds by magic angle spinning solid state NMR in a double-stranded RNA associated with myotonic dystrophy. Nucleic Acids Res 32:1177–1183CrossRefGoogle Scholar
  30. Levitt MH (2002) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance. John Wiley, Chichester, New YorkGoogle Scholar
  31. Luca S, White JF, Sohal Ak, Filippov DV, van Boom JH, Grisshammer R, Baldus M (2003) The conformation of neurotinsin bound to its G protein-coupled receptor. Proc Natl Acad Sci USA 100:10706–10711CrossRefADSGoogle Scholar
  32. Marin-Montesinos I, Brouwer DH, Antonioli G, Lai WC, Brinkmann A, Levitt MH (2005) Heteronuclear decoupling interference during symmetry-based homonuclear recoupling in solid-state NMR. J Magn Reson 177:307–317CrossRefADSGoogle Scholar
  33. Mou Y, Chao JCH, Chan JCC (2006) Efficient spin–spin scalar coupling mediated 13C homonuclear polarization in biological solids without proton decoupling. Solid State Nucl Magn Reson 29:278–282CrossRefGoogle Scholar
  34. Rienstra CM, Tucker-Kellog L, Jaroniec CP, Hohwy M, Reif B, McMahon MT, Tidor B, Lozano-Perez T, Griffin RG (2002) De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 99:10260–10265CrossRefADSGoogle Scholar
  35. Riedel K, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2005) Characterisation of hydrogen bonding networks in RNA via magic angle spinning solid state NMR spectroscopy. J Biomol NMR 31:331–336CrossRefGoogle Scholar
  36. Riedel K, Herbst C, Häfner S, Leppert J, Ohlenschläger O, Swanson MS, Görlach M, Ramachandran R (2006) Constraints on the structure of (CUG)97 RNA from magic-angle-spinning solid-state NMR spectroscopy. Angew Chem Int Ed 45:5620–5623CrossRefGoogle Scholar
  37. Riedel K, Herbst C, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2007) Broadband homonuclear chemical shift correlation at high MAS frequencies: a study of tanh/tan adiabatic RF pulse schemes without 1H decoupling during mixing. J Biomol NMR 37:277–286CrossRefGoogle Scholar
  38. Tycko R (2003) Application of solid state NMR to the structural characterization of amyloid fibrils: methods and results. Prog Nucl Magn Reson Spectrosc 42:53–68CrossRefGoogle Scholar
  39. Veshtort M, Griffin RG (2006) SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. J Magn Reson 178:248–282CrossRefADSGoogle Scholar
  40. Wall M (1996) GAlib: a C++ Library of genetic algorithm components, version 2.4.7Google Scholar
  41. Wu XL, Freeman R (1989) Darwin’s ideas applied to magnetic resonance. The marriage broker. J Magn Reson 85:414–420Google Scholar
  42. Xu P, Wu XL, Freeman R (1992) User-friendly selective pulses. J Magn Reson 99:308–322Google Scholar
  43. Zech SG, Wand AJ, McDermott AE (2005) Protein structure determination by high-resolution solid state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc 127:8618–8626CrossRefGoogle Scholar
  44. Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 46:8380–8383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christian Herbst
    • 1
  • Jirada Herbst
    • 2
  • Anika Kirschstein
    • 1
  • Jörg Leppert
    • 1
  • Oliver Ohlenschläger
    • 1
  • Matthias Görlach
    • 1
  • Ramadurai Ramachandran
    • 1
    Email author
  1. 1.Research group Biomolecular NMR spectroscopyLeibniz Institute for Age Research, Fritz Lipmann InstituteJenaGermany
  2. 2.Department of Mathematics, Statistics and Computer, Faculty of ScienceUbon Ratchathani UniversityUbon RatchathaniThailand

Personalised recommendations