Journal of Biomolecular NMR

, Volume 42, Issue 3, pp 155–158 | Cite as

Solution NMR structure determination of proteins revisited

  • Martin BilleterEmail author
  • Gerhard Wagner
  • Kurt Wüthrich


This ‘Perspective’ bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified.


NMR structure determination of proteins Protein biochemistry Automation Structural biology Structural genomics 



We thank Dr. Ian A. Wilson for a critical reading of the manuscript. M.B. acknowledges support by the EU (LSHG-CT-2005-018988), G.W. by the NIH grant GM 47467, and K.W. by the Joint Center for Structural Genomics in La Jolla, CA, USA (JCSG, NIH #GM074898) and the NCCR Structural Biology (Swiss National Science Foundation and ETH Zürich, Switzerland).


  1. Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini J, Baran MC, Chiang Y-W, Climent T, Cooper B, Denissova NG, Douglas SM, Everett JK, Ho CK, Macapagal D, Rajan PK, Shastry R, Shih L-Y, Swapna GV, Wilson M, Wu M, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Robotic cloning and protein production platform of the northeast structural genomics consortium. Methods Enzymol 394:210–243CrossRefGoogle Scholar
  2. Bagby S, Tong KI, Liu D, Alattia JR, Ikura M (1997) The button test: a small scale method using microdialysis cells for assessing protein solubility at concentrations suitable for NMR. J Biomol NMR 10:279–282CrossRefGoogle Scholar
  3. Bagby S, Tong KI, Ikura M (2001) Optimization of protein solubility and stability for protein nuclear magnetic resonance. Methods Enzymol 339:20–41CrossRefGoogle Scholar
  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  5. Bhattacharya A, Tejero R, Montelione G (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795CrossRefGoogle Scholar
  6. Brown EN, Ramaswamy S (2007) Quality of protein crystal structures. Acta Crystallogr D 63:941–950CrossRefGoogle Scholar
  7. Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2007) Protein NMR spectroscopy. Academic Press, New YorkGoogle Scholar
  8. Chandonia J-M, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351CrossRefADSGoogle Scholar
  9. Levitt M (2007) Growth of novel protein structural data. Proc Natl Acad Sci USA 104:3183–3188CrossRefADSGoogle Scholar
  10. Liu G, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 102:10487–10492CrossRefADSGoogle Scholar
  11. Pan X, Wesenberg GE, Markley JL, Fox BG, Phillips GN Jr, Bingman CA (2007) A graphical approach to tracking and reporting target status in structural genomics. J Struct Funct Genomics 8:209–216CrossRefGoogle Scholar
  12. Slabinski L, Jaroszewski L, Rychlewski L, Wilson IA, Lesley SA, Godzik A (2007a) XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23:3403–3405CrossRefGoogle Scholar
  13. Slabinski L, Jaroszewski L, Rodrigues APC, Rychlewski L, Wilson IA, Lesley SA, Godzik A (2007b) The challenge of protein structure determination—lessons from structural genomics. Protein Sci 16:2472–2482CrossRefGoogle Scholar
  14. Stuart DI, Jones EY, Wilson KS, Daenke S (2006) Structural proteomics in Europe—the best of both worlds. Acta Crystallogr D. doi: 10.1107/S0907444906035347
  15. Wüthrich K (2003) NMR studies of structure and function of biological macromolecules. J Biomol NMR 27:13–39CrossRefGoogle Scholar
  16. Yee A, Chang X, Pineda-Lucena A, Wu B, Semsei A, Le B, Ramelot T, Lee GM, Bhattacharyya S, Gutierrez P, Denisov A, Lee C-H, Cort JR, Kozlov G, Liao J, Finak G, Chen L, Wishart D, Lee W, Mcintosh LP, Gerhring K, Kennedy MA, Edwards AM, Arrowsmith CH (2002) An NMR approach to structural proteomics. Proc Natl Acad Sci USA 99:1825–1830CrossRefADSGoogle Scholar
  17. Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shirouzu M, Terada T, Ito Y, Matsuo Y, Kuroda Y, Nishimura Y, Kyogoku Y, Miki K, Masui R, Kuramitsu S (2002) Structural genomics projects in Japan. Nat Struct Biol 7:943–945CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Martin Billeter
    • 1
    Email author
  • Gerhard Wagner
    • 2
  • Kurt Wüthrich
    • 3
    • 4
  1. 1.Department of ChemistryUniversity of GothenburgGothenburgSweden
  2. 2.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA
  3. 3.Department of Molecular Biology and The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaUSA
  4. 4.Institute of Molecular Biology and BiophysicsETH ZürichZurichSwitzerland

Personalised recommendations