Journal of Biomolecular NMR

, Volume 42, Issue 3, pp 159–162

Stable isotope labeling of protein by Kluyveromyces lactis for NMR study

Communication

Abstract

Stable isotope labeling for proteins of interest is an important technique in structural analyses of proteins by NMR spectroscopy. Escherichia coli is one of the most useful protein expression systems for stable isotope labeling because of its high-level protein expression and low costs for isotope-labeling. However, for the expression of proteins with numerous disulfide-bonds and/or post-translational modifications, E. coli systems are not necessarily appropriate. Instead, eukaryotic cells, such as yeast Pichia pastoris, have great potential for successful production of these proteins. The hemiascomycete yeast Kluyveromyces lactis is superior to the methylotrophic yeast P. pastoris in some respects: simple and rapid transformation, good reproducibility of protein expression induction and easy scale-up of culture. In the present study, we established a protein expression system using K. lactis, which enabled the preparation of labeled proteins using glucose and ammonium chloride as a stable isotope source.

Keywords

Yeast Kluyveromyces lactis Isotope labeling Secretary protein expression 

Abbreviations

K. lactis

Kluyveromyces lactis

MBP

Maltose-binding protein

YNB

Yeast nitrogen base

MALDI-TOF

Matrix-assisted laser desorption ionization-time of flight

HSQC

Heteronuclear single quantum coherence

References

  1. Cai M, Huang Y, Sakaguchi K, Clore GM, Gronenborn AM, Craigie R (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. J Biomol NMR 11:97–102CrossRefGoogle Scholar
  2. Colussi P, Taron CH (2005) Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 71:7092–7098CrossRefGoogle Scholar
  3. Cregg JM, Madden KR, Barringer KJ, Thill G, Stillman CA (1989) Functional characterization of the two alcohol oxidase gene from the yeast Pichia pastoris. Mol Cell Biol 9:1316–1323Google Scholar
  4. Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138CrossRefGoogle Scholar
  5. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMR pipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  6. Fleer R, Chen XJ, Amellal N, Yeh P, Fournier A, Guinet F, Gault N, Faucher D, Folliard F, Fukuhara H, Mayaux JF (1991a) High-level secretion of correctly processed recombinant interleukin-1β in Kluyveromyces lactis. Gene 107:285–295CrossRefGoogle Scholar
  7. Fleer R, Yeh P, Amellal N, Maury I, Fournier A, Bacchetta F, Baduel P, Jung G, H’ote H, Becquart J, Fukuhara H, Mayaux JF (1991b) Stable multicopy vectors for high-level secretion of human serum albumin by Kluyveromyces lactis. Bio/Technology 9:968–975CrossRefGoogle Scholar
  8. Gardner KH, Zhang X, Gehring K, Kay LE (1998) Solution NMR studies of 42 kDa Escherichia coli maltose binding protein/β-cyclodextrin complex: chemical shift assignments and analysis. J Am Chem Soc 120:11738–11748CrossRefGoogle Scholar
  9. Goddard TD, Kneller DG (2006) SPARKY 3—NMR assignment and integration software. University of California, San FranciscoGoogle Scholar
  10. Ichikawa O, Osawa M, Nishida N, Goshima N, Nomura N, Shimada I (2007) Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO J 26:4168–4176CrossRefGoogle Scholar
  11. Jidenko M, Nielsen RC, Sørensen TL, Møller JV, le Maire M, Nissen P, Jaxel C (2005) Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:11687–11691CrossRefADSGoogle Scholar
  12. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Guntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57CrossRefADSGoogle Scholar
  13. Lilie H, Schwarz E, Rudolph R (1998) Advances in refolding of proteins produced in E.coli. Curr Opin Biotechnol 9:497–501CrossRefGoogle Scholar
  14. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903CrossRefADSGoogle Scholar
  15. Merico A, Capitanio D, Vigentini I, Ranzi BM, Compagno C (2004) How physiological and cultural conditions influence heterologous protein production in Kluyveromyces lactis. J Biotechnol 109:139–146CrossRefGoogle Scholar
  16. Morgan WD, Kragt A, Feeney J (2000) Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR studies. J Biomol NMR 17:337–347CrossRefGoogle Scholar
  17. Tate CG (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett 504:94–98CrossRefGoogle Scholar
  18. Tokunaga M, Ishibashi M, Tatsuda D, Tokunaga H (1997) Secretion of mouse alpha-amylase from Kluyveromyces lactis. Yeast 13:699–707CrossRefGoogle Scholar
  19. Weiss HM, Haase W, Michel H, Reiländer H (1998) Comparative biochemical and pharmacological characterization of the mouse 5TH5A 5-hydroxytriptamine receptor and the human-β2-adrenergic receptor produced in the methylotrophic yeast Pichia pastoris. Biochem J 330:1137–1147Google Scholar
  20. Wildt S, Gerngross TA (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128CrossRefGoogle Scholar
  21. Wood MJ, Komives EA (1999) Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J Biomol NMR 13(2):149–159CrossRefGoogle Scholar
  22. Xu Y, Zheng Y, Fan JS, Yang D (2006) A new strategy for structure determination of large proteins in solution without deuteration. Nat Methods 3:931–937CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Japan Biological Informatics Consortium (JBiC)TokyoJapan
  2. 2.Biomedicinal Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
  3. 3.Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan

Personalised recommendations