Journal of Biomolecular NMR

, Volume 39, Issue 4, pp 275–289 | Cite as

Combined chemical shift changes and amino acid specific chemical shift mapping of protein–protein interactions

  • Frank H. Schumann
  • Hubert Riepl
  • Till Maurer
  • Wolfram Gronwald
  • Klaus-Peter Neidig
  • Hans Robert KalbitzerEmail author


Protein–protein interactions are often studied by chemical shift mapping using solution NMR spectroscopy. When heteronuclear data are available the interaction interface is usually predicted by combining the chemical shift changes of different nuclei to a single quantity, the combined chemical shift perturbation \(\Updelta \delta_{\rm comb}.\) In this paper different procedures (published and non-published) to calculate \(\Updelta \delta_{\rm comb}\) are examined that include a variety of different functional forms and weighting factors for each nucleus. The predictive power of all shift mapping methods depends on the magnitude of the overlap of the chemical shift distributions of interacting and non-interacting residues and the cut-off criterion used. In general, the quality of the prediction on the basis of chemical shift changes alone is rather unsatisfactory but the combination of chemical shift changes on the basis of the Hamming or the Euclidian distance can improve the result. The corrected standard deviation to zero of the combined chemical shift changes can provide a reasonable cut-off criterion. As we show combined chemical shifts can also be applied for a more reliable quantitative evaluation of titration data.


Chemical shift mapping Combined chemical shift NMR Protein–protein interaction 



This work was supported by the European Union (Structural Genomics in Europe), the Fonds der chemischen Industrie, the Deutsche Forschungsgemeinschaft and the BMBF.


  1. Asakura T, Taoka K, Demura M, Williamson MP (1995) The relationship between amide proton chemical shifts and secondary structure in proteins. J Biomol NMR 6(3):227–36CrossRefGoogle Scholar
  2. Baldi P, Brunak S (2001) Bioinformatics. The machine learning approach, 2nd edn. MIT Press, London, England, pp 158, 159Google Scholar
  3. Dominguez C, Boelens R, Bonvin AMJJ (2003) A Protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737CrossRefGoogle Scholar
  4. Ekiel I, Banville DL, Shen SH, Slon-Usakiewicz JJ, Koshy A, Gehring K (1998) Main-chain signal assignment for the PDZ2 domain from human protein tyrosine phosphatase hPTP1E and its complex with a C-terminal peptide from the Fas receptor. J Biomol NMR 12:455–456CrossRefGoogle Scholar
  5. Farmer BTII, Constantine KL, Goldfarb V, Friedrichs MS, Wittekind M, Yanchunas JJ, Robertson JG, Mueller L (1996) Localizing the NADP+ binding site on the MurB enzyme by NMR. Nat Struct Biol 3:995–997CrossRefGoogle Scholar
  6. Fujinaga M, Sielecki AR, Read RJ, Ardelt W, Laskowski M Jr, James MNG (1987) Crystal and molecular structures of the complex of α-chymotrypsin with its inhibitor Turkey ovomucoid third domain at 1.8 Å resolution. J Mol Biol 195:397–418CrossRefGoogle Scholar
  7. Garrett DS, Seok Y-J, Peterkofsky A, Gronenborn AM, Clore GM (1999) Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. Nat Struct Biol 6:166–173CrossRefGoogle Scholar
  8. Geyer M, Herrmann C, Wohlgemuth S, Wittinghofer A, Kalbitzer HR (1997) Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nat Struct Biol 4:684–698CrossRefGoogle Scholar
  9. Gohlke H, Kiel C, Case DA (2003) Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. J Mol Biol 330:891–913CrossRefGoogle Scholar
  10. Gröger C, Möglich A, Pons M, Koch B, Hengstenberg W, Kalbitzer HR, Brunner E (2003) NMR-spectroscopic mapping of an engineered cavity in the I14A mutant of HPr from Staphylococcus carnosus using Xenon. J Am Chem Soc 125:8726–8727CrossRefGoogle Scholar
  11. Heitmann B, Maurer T, Weitzel JM, Strätling WH, Kalbitzer HR, Brunner E (2003) Solution structure of the matrix attachment region-binding domain of chicken MeCP2. Eur J Biochem 270:3263–3270CrossRefGoogle Scholar
  12. Kozlov G, Gehring K, Ekiel I (2000) Solution structure of the PDZ2 domain from human phosphatase hPTP1E and its interactions with C-terminal peptides from the Fas receptor. Biochemistry 39:2572–2580CrossRefGoogle Scholar
  13. Li H, Yamada H, Akasaka K (1998) Effect of pressure on individual hydrogen bonds in proteins. Basic pancreatic trypsin inhibitor. Biochemistry 37(5):1167–73CrossRefGoogle Scholar
  14. Meininger DP, Rance M, Starovasnik MA, Fairbrother WJ, Skelton NJ (2000) Characterization of the binding interface between the e-domain of Staphylococcal protein A and an antibody Fv-fragment. Biochemistry 39:26–36CrossRefGoogle Scholar
  15. Mulder FA, Schipper D, Bott R, Boelens R (1999) Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. J Mol Biol 292(1):111–123CrossRefGoogle Scholar
  16. Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A (1995) The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with RaplA and a GTP analogue. Nature 375 (6532):554–560CrossRefADSGoogle Scholar
  17. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated 2T relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371CrossRefADSGoogle Scholar
  18. Song J, Markley JL (2001) NMR chemical shift mapping of the binding site of a protein proteinase inhibitor: changes in the 1H, 13C and 15N NMR chemical shifts of turkey ovomucoid third domain upon binding to bovine chymotrypsin Aα. J Mol Recognit 14:166–171CrossRefGoogle Scholar
  19. Terada T, Ito Y, Shirouzu M, Tateno M, Hashimoto K, Kigawa T, Ebisuzaki T, Takio K, Shibata T, Yokoyama S, Smith BO, Laue ED, Cooper JA (1999) Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins. J Mol Biol 286:219–232CrossRefGoogle Scholar
  20. Wagner G, Pardi A, Wüthrich K (1983) Hydrogen bond length and proton NMR chemical shifts in proteins. J Am Chem Soc 105:5948–5949CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Frank H. Schumann
    • 1
  • Hubert Riepl
    • 1
  • Till Maurer
    • 2
  • Wolfram Gronwald
    • 1
  • Klaus-Peter Neidig
    • 3
  • Hans Robert Kalbitzer
    • 1
    Email author
  1. 1.Institute of Biophysics and Physical BiochemistryUniversity of RegensburgRegensburgGermany
  2. 2.Analytical Sciences DepartmentBoehringer Ingelheim Pharma GmbH & Co. KGIngelheim am RheinGermany
  3. 3.Software DepartmentBruker BioSpin GmbHRheinstettenGermany

Personalised recommendations