Journal of Biomolecular NMR

, Volume 39, Issue 2, pp 91–96 | Cite as

Magnetic field induced residual dipolar couplings of imino groups in nucleic acids from measurements at a single magnetic field

  • Jinfa Ying
  • Alexander Grishaev
  • Michael P. Latham
  • Arthur Pardi
  • Ad Bax


For base-paired nucleic acids, variations in 1 J NH and the imino 1H chemical shift are both dominated by hydrogen bond length. In the absence of molecular alignment, the 1 J NH coupling for the imino proton then can be approximated by 1 J NH = (1.21Hz/ppm)δH − 103.5 ± 0.6 Hz, where δH represents the chemical shift of the imino proton in ppm. This relation permits imino residual dipolar couplings (RDCs) resulting from magnetic susceptibility anisotropy (MSA) to be extracted from measurement of (1 J NH + RDC) splittings at a single magnetic field strength. Magnetic field-induced RDCs were measured for tRNAVal and the alignment tensor determined from magnetic-field alignment of tRNAVal agrees well with the tensor calculated by summation of the MSA tensors of the individual nucleobases.


Alignment Chemical shift Dipolar coupling Magnetic susceptibility anisotropy RDC tRNAVal 



This work was supported in part by the Intramural Research Program of the NIDDK, NIH, and by the Intramural AIDS-Targeted Antiviral Program of the Office of the Director, NIH, and NIH grant AI33098 (AP); MPL was supported in part by an NIH Training Grant T32 GM65103. We thank Dr. Sam E. Butcher and Dipa Sashital for providing us with the15N-enriched U2-U6 sample.

Supplementary material


  1. Al-Hashimi HM, Tolman JR, Majumdar A, Gorin A, Patel DJ (2001) Determining stoichiometry in homomultimeric nucleic acid complexes using magnetic field induced residual dipolar couplings. J Am Chem Soc 123:5806–5807CrossRefGoogle Scholar
  2. Barfield M, Dingley AJ, Feigon J, Grzesiek S (2001) A DFT study of the interresidue dependencies of scalar J-coupling and magnetic shielding in the hydrogen-bonding regions of a DNA tripler. J Am Chem Soc 123:4014–4022CrossRefGoogle Scholar
  3. Beger RD, Marathias VM, Volkman BF, Bolton PH (1998) Determination of internuclear angles of DNA using paramagnetic assisted magnetic alignment. J Magn Reson 135:256–259CrossRefGoogle Scholar
  4. Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA (2004) Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci USA 101:6841–6846CrossRefADSGoogle Scholar
  5. Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Prog Nucl Magn Reson Spectrosc 46:23–61CrossRefGoogle Scholar
  6. Bothner-By AA (1996) Magnetic field induced alignment of molecules. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance, vol 5. Wiley, Chichester, pp 2932–2938Google Scholar
  7. Bothner-By AA, Gayathri C, Van Zijl PCM, Maclean C, Lai JJ, Smith KM (1985) High-field orientation effects in the high-resolution proton NMR-spectra of diverse porphyrins. Magn Reson Chem 23:935–938CrossRefGoogle Scholar
  8. Bryce DL, Boisbouvier J, Bax A (2004) Experimental and theoretical determination of nucleic acid magnetic susceptibility: importance for the study of dynamics by field-induced residual dipolar couplings. J Am Chem Soc 126:10820–10821CrossRefGoogle Scholar
  9. Clore GM, Starich MR, Gronenborn AM (1998) Measurement of residual dipolar couplings of marcomolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J Am Chem Soc 120:10571–10572CrossRefGoogle Scholar
  10. Dingley AJ, Masse JE, Peterson RD, Barfield M, Feigon J, Grzesiek S (1999) Internucleotide scalar couplings across hydrogen bonds in Watson-Crick and Hoogsteen base pairs of a DNA triplex. J Am Chem Soc 121:6019–6027CrossRefGoogle Scholar
  11. Gaponenko V, Dvoretsky A, Walsby C, Hoffman BM, Rosevear PR (2000) Calculation of z-coordinates and orientational restraints using a metal binding tag. Biochemistry 39:15217–15224CrossRefGoogle Scholar
  12. Gayathri C, Bothner-By AA, Van Zijl PCM, Maclean C (1982) Dipolar magnetic-field effects in NMR-spectra of liquids. Chem Phys Lett 87:192–196CrossRefADSGoogle Scholar
  13. Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5:1065–1074CrossRefGoogle Scholar
  14. Kung HC, Wang KY, Goljer I, Bolton PH (1995) Magnetic alignment of duplex and quadruplex DNAs. J Magn Reson Ser B 109:323–325CrossRefGoogle Scholar
  15. Lohman JAB, MacLean C (1978) Alignment effects on high resolution NMR spectra induced by the magnetic field. Chem Phys 35:269–274CrossRefGoogle Scholar
  16. Losonczi JA, Andrec M, Fischer MWF, Prestegard JH (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson 138:334–342CrossRefADSGoogle Scholar
  17. Lukavsky PJ, Kim I, Otto GA, Puglisi JD (2003) Structure of HCVIRES domain II determined by NMR. Nat Struct Biol 10:1033–1038CrossRefGoogle Scholar
  18. Ma C, Opella SJ (2000) Lanthanide ions bind specifically to an added “EF-hand” and orient a membrane protein in micelles for solution NMR spectroscopy. J Magn Reson 146:381–384CrossRefADSGoogle Scholar
  19. Pervushin KV, Wider G, Wuthrich K (1998) Single transition-to-single transition polarization transfer (ST2-PT) in [N-15,H-1]-TROSY. J Biomol NMR 12:345–348CrossRefGoogle Scholar
  20. Peti W, Meiler J, Bruschweiler R, Griesinger C (2002) Model-free analysis of protein backbone motion from residual dipolar couplings. J Am Chem Soc 124:5822–5833CrossRefGoogle Scholar
  21. Piotto M, Saudek V, Sklenár V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous sloutions. J Biomol NMR 2:661–665CrossRefGoogle Scholar
  22. Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540CrossRefGoogle Scholar
  23. Rodriguez-Castaneda F, Haberz P, Leonov A, Griesinger C (2006) Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn Reson Chem 44:S10–S16CrossRefGoogle Scholar
  24. Ruckert M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 122:7793–7797CrossRefGoogle Scholar
  25. Saenger W (1984). Principles of nucleic acid structure. Springer Verlag, New YorkGoogle Scholar
  26. Sashital DG, Cornilescu G, Butcher SE (2004) U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol 11:1237–1242CrossRefGoogle Scholar
  27. Sass H-J, Musco G, Stahl SJ, Wingfield PT, Grzesiek S (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J Biomol NMR 18:303–309CrossRefGoogle Scholar
  28. Sass J, Cordier F, Hoffmann A, Rogowski M, Cousin A, Omichinski JG, Lowen H, Grzesiek S (1999) Purple membrane induced alignment of biological macromolecules in the magnetic field. J Am Chem Soc 121:2047–2055CrossRefGoogle Scholar
  29. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114CrossRefADSGoogle Scholar
  30. Tjandra N, Grzesiek S, Bax A (1996) Magnetic field dependence of nitrogen-proton J splittings in N-15-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J Am Chem Soc 118:6264–6272CrossRefGoogle Scholar
  31. Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997) Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol 4:732–738CrossRefGoogle Scholar
  32. Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci USA 92:9279–9283CrossRefADSGoogle Scholar
  33. Tolman JR, Ruan K (2006) NMR residual dipolar couplings as probes of biomolecular dynamics. Chem Rev 106:1720–1736CrossRefGoogle Scholar
  34. Tycko R, Blanco FJ, Ishii Y (2000) Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couuplings in high-resolution biomolecular NMR. J Am Chem Soc 122:9340–9341CrossRefGoogle Scholar
  35. van Buuren BNM, Schleucher J, Wittmann V, Griesinger C, Schwalbe H, Wijmenga SS (2004) NMR spectroscopic determination of the solution structure of a branched nucleic acid from residual dipolar couplings by using isotopically labeled nucleotides. Angew Chem Int Ed 43:187–192CrossRefGoogle Scholar
  36. Vermeulen A, McCallum SA, Pardi A (2005) Comparison of the global structure and dynamics of native and unmodified tRNA. Biochemistry 44:6024–6033CrossRefGoogle Scholar
  37. Vermeulen A, Zhou H, Pardi A (2000) Determining DNA global structure and DNA bending by application of NMR residual dipolar couplings. J Am Chem Soc 122:9638–9647CrossRefGoogle Scholar
  38. Wohnert J, Franz KJ, Nitz M, Imperiali B, Schwalbe H (2003) Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc 125:13338–13339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA
  2. 2.Department of Chemistry and Biochemistry, 215 UCBUniversity of ColoradoBoulderUSA

Personalised recommendations