Journal of Biomolecular NMR

, Volume 37, Issue 4, pp 277–286 | Cite as

Broadband homonuclear chemical shift correlation at high MAS frequencies: a study of tanh/tan adiabatic RF pulse schemes without \({^{{\bf 1}}\hbox{{\bf H}}}\) decoupling during mixing

  • Kerstin Riedel
  • Christian Herbst
  • Jörg Leppert
  • Oliver Ohlenschläger
  • Matthias Görlach
  • Ramadurai Ramachandran
Article

Abstract

At high magic angle spinning (MAS) frequencies the potential of tanh/tan adiabatic RF pulse schemes for 13C chemical shift correlation without 1H decoupling during mixing has been evaluated. It is shown via numerical simulations that a continuous train of adiabatic 13C inversion pulses applied at high RF field strengths leads to efficient broadband heteronuclear decoupling. It is demonstrated that this can be exploited effectively for generating through-bond and through-space, including double-quantum, correlation spectra of biological systems at high magnetic fields and spinning speeds with no 1H decoupling applied during the mixing period. Experiments carried out on a polycrystalline sample of histidine clearly suggest that an improved signal to noise ratio can be realised by eliminating 1H decoupling during mixing.

Keywords

Adiabatic inversion pulses Chemical shift correlation MAS Solid state NMR 

References

  1. Bak M, Nielsen NC (1997) REPULSION, A novel approach to efficient powder averaging in solid-state NMR. J Magn Reson 125:132–139CrossRefGoogle Scholar
  2. Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330CrossRefADSGoogle Scholar
  3. Baldus M (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog Nucl Magn Reson Spectrosc 41:1–47CrossRefGoogle Scholar
  4. Bennett AE, Griffin RG, Vega S (1994) Recoupling of homo- and heteronuclear dipolar interactions in rotating solids. In: NMR basic principles and progress, vol 33. Springer, Berlin, pp 1–77Google Scholar
  5. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958CrossRefADSGoogle Scholar
  6. Bennett AE, Rienstra CM, Griffiths JM, Zhen W, Lansbury PT, Griffin RG (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463–9479CrossRefADSGoogle Scholar
  7. Brinkmann A, Levitt MH (2001) Symmetry principles in the nuclear magnetic resonance of spinning solids: heteronuclear recoupling by generalized Hartmann-Hahn sequences. J Chem Phys 115:357–384CrossRefADSGoogle Scholar
  8. Brinkmann A, Schmedt auf der Günne J, Levitt MH (2002) Homonuclear zero-quantum recoupling in fast magic-angle spinning nuclear magnetic resonance. J Magn Reson 156:79–96CrossRefADSGoogle Scholar
  9. Carravetta M, Eden M, Zhao X, Brinkmann A, Levitt MH (2000) Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids. Chem Phys Lett 321:205–215CrossRefGoogle Scholar
  10. De Paepe G, Bayro MJ, Lewandowski J, Griffin RG (2006) Broadband homonuclear correlation spectroscopy at high magnetic fields and MAS frequencies. J Am Chem Soc 128:1776–1777CrossRefGoogle Scholar
  11. Dusold S, Sebald A (2000) Dipolar recoupling under magic-angle spinning conditions. Annu Rep NMR Spectrosc 41:185–264CrossRefGoogle Scholar
  12. Griffin RG (1998) Dipolar recoupling in MAS spectra of biological solids. Nature Struct Biol 5:508–512CrossRefGoogle Scholar
  13. Hardy EH, Detken A, Meier BH (2003) Fast-MAS total through-bond correlation spectroscopy using adiabatic pulses. J Magn Reson 165:208–218CrossRefADSGoogle Scholar
  14. Heise B, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2002) Chemical shift correlation via RFDR: elimination of resonance offset effects. J Biomol NMR 24:237–243CrossRefGoogle Scholar
  15. Herbst C (2006a) Festkörper-NMR-Untersuchungen an isotopen-markierten biologischen Systemen, Diploma, Friedrich-Schiller-Universität JenaGoogle Scholar
  16. Herbst C, Riedel K, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2006b) Solid state NMR at high magic angle spinning frequencies: dipolar chemical shift correlation with adiabatic inversion pulse based RF pulse schemes. J Biomol NMR 35:241–248CrossRefGoogle Scholar
  17. Hughes CE, Luca S, Baldus M (2004) Radio-frequency driven polarization transfer without heteronuclear decoupling in rotating solids. Chem Phys Lett 385:435–440CrossRefGoogle Scholar
  18. Hwang TL, van Zijl PCM, Garwood M (1998) Fast broadband inversion by adiabatic pulses. J Magn Reson 133:200–203CrossRefGoogle Scholar
  19. Leppert J, Heise B, Görlach M, Ramachandran R (2002) REDOR: an assessment of the efficacy of dipolar recoupling with adiabatic inversion pulses. J Biomol NMR 23:227–238CrossRefGoogle Scholar
  20. Leppert J, Heise B, Ohlenschläger O, Görlach M, Ramachandran R (2003) Broadband RFDR with adiabatic inversion pulses. J Biomol NMR 26:13–24CrossRefGoogle Scholar
  21. Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2004a) Adiabatic TOBSY in rotating solids. J Biomol NMR 29:167–173CrossRefGoogle Scholar
  22. Leppert J, Urbinati CR, Häfner S, Ohlenschläger O, Swanson MS, Görlach M, Ramachandran R (2004b) Identification of NH···N hydrogen bonds by magic angle spinning solid state NMR in a double-stranded RNA associated with myotonic dystrophy. Nucleic Acids Res 3:1177–1183CrossRefGoogle Scholar
  23. Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2004c) RFDR with adiabatic inversion pulses: application to internuclear distance measurements. J Biomol NMR 28:229–233CrossRefGoogle Scholar
  24. Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2004d) Adiabatic heteronuclear decoupling in rotating solids. J Biomol NMR 29:319–324CrossRefGoogle Scholar
  25. Levitt MH, Freeman R, Frenkiel T (1983) Broadband decoupling in high-resolution nuclear magnetic resonance spectroscopy. Adv Magn Reson 11:47–110Google Scholar
  26. Levitt MH (2002) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance, vol 9. John Wiley, Chichester, New York, p 165Google Scholar
  27. Marin-Montesinos I, Brouwer DH, Antonioli G, Lai WC, Brinkmann A, Levitt MH (2005) Heteronuclear decoupling interference during symmetry-based homonuclear recoupling in solid-state NMR. J Magn Reson 177:307–317CrossRefADSGoogle Scholar
  28. McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 14:554–561CrossRefGoogle Scholar
  29. Mou Y, Chao JCH, Chan JCC (2006) Efficient spin-spin scalar coupling mediated C-13 homonuclear polarization transfer in biological solids without proton decoupling. Solid State Nucl Magn Reson 29:278–282CrossRefGoogle Scholar
  30. Riedel K (2004) Festkörper-NMR untersuchungen von ribonukleinsäuren mittels adiabatischer symmetriebasierter pulssequenzen, Diploma, Friedrich-Schiller-Universität JenaGoogle Scholar
  31. Riedel K, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2004a) Heteronuclear decoupling in rotating solids via symmetry-based adiabatic RF pulse schemes. Chem Phys Lett 395:356–361CrossRefGoogle Scholar
  32. Riedel K, Leppert J, Häfner S, Ohlenschläger O, Görlach M, Ramachandran R (2004b) Homonuclear chemical shift correlation in rotating solids via \({{{RN}_{n}}^\nu}\) symmetry-based adiabatic RF pulse schemes. J Biomol NMR 30:389–395CrossRefGoogle Scholar
  33. Riedel K, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2005) TEDOR with adiabatic inversion pulses: resonance assignments of 13C/15N labelled RNAs. J Biomol NMR 31:49–57CrossRefGoogle Scholar
  34. Riedel K, Herbst C, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2006a) Broadband homonuclear double-quantum NMR/filtering via zero-quantum dipolar recoupling in rotating solids. Chem Phys Lett 424:178–183CrossRefGoogle Scholar
  35. Riedel K, Herbst C, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2006b) Tailoring broadband inversion pulses for MAS solid state NMR. J Biomol NMR 35:275–283CrossRefGoogle Scholar
  36. Riedel K, Herbst C, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2006c) Heteronuclear decoupling in rotating solids: improving the efficacy of \({{{CN}_{n}}^\nu}\) symmetry-based tanh/tan adiabatic RF pulse schemes. Chem Phys Lett 429:590–594CrossRefGoogle Scholar
  37. States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J Magn Reson 48:286–292Google Scholar
  38. Thompson LK (2002) Solid-state NMR studies of the structure and mechanisms of proteins. Curr Opin Struct Biol 12:661–669CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Kerstin Riedel
    • 1
  • Christian Herbst
    • 1
  • Jörg Leppert
    • 1
  • Oliver Ohlenschläger
    • 1
  • Matthias Görlach
    • 1
  • Ramadurai Ramachandran
    • 1
  1. 1.Research Group Molecular Biophysics/NMR Spectroscopy, Leibniz Institute for Age ResearchFritz Lipmann InstituteJenaGermany

Personalised recommendations