Journal of Biomolecular NMR

, Volume 38, Issue 1, pp 11–22 | Cite as

Joint composite-rotation adiabatic-sweep isotope filtration

  • Elizabeth R. Valentine
  • Fabien Ferrage
  • Francesca Massi
  • David Cowburn
  • Arthur G. PalmerIII


Joint composite-rotation adiabatic-sweep isotope filters are derived by combining the composite-rotation [Stuart AC et al. (1999) J Am Chem Soc 121: 5346–5347] and adiabatic-sweep [Zwahlen C et al. (1997) J Am Chem Soc 119:6711–6721; Kupče E, Freeman R (1997) J Magn Reson 127:36–48] approaches. The joint isotope filters have improved broadband filtration performance, even for extreme values of the one-bond 1H–13C scalar coupling constants in proteins and RNA molecules. An average Hamiltonian analysis is used to describe evolution of the heteronuclear scalar coupling interaction during the adiabatic sweeps within the isotope filter sequences. The new isotope filter elements permit improved selective detection of NMR resonance signals originating from 1H spins attached to an unlabeled natural abundance component of a complex in which the other components are labeled with 13C and 15N isotopes.


Composite pulse J-filter NOESY Structure determination vts SAM domain 



This work was supported by NIH grants GM50291 (A.G. P.) and GM47021 (D. C.). E.R.V. acknowledges support from a National Science Foundation Graduate Research Fellowship. We thank Joel A. Butterwick (Columbia University), Thomas A. Edwards (Mt. Sinai School of Medicine), and Aneel K. Aggarwal (Mt. Sinai School of Medicine) for the Vts1 SAM domain/TCE 13mer RNA sample. Helpful discussions with Mark Rance (Univ. Cincinnati) are acknowledged gratefully.


  1. Bennett AE, Gross JD, Wagner G (2003) Broadband 13C-13C adiabatic mixing in solution optimized for high fields. J Magn Reson 165:59–79ADSCrossRefGoogle Scholar
  2. Breeze AL (2000) Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog NMR Spectrosc 36:323–372CrossRefGoogle Scholar
  3. Böhlen J-M, Burghardt I, Rey M, Bodenhausen G (1990) Frequency-modulated “chirp” pulses for broadband inversion recovery in magnetic resonance. J Magn Reson 90:183–191Google Scholar
  4. Edwards TA, Butterwick JA, Zeng L, Gupta YK, Wang X, Wharton RP, Palmer AG, Aggarwal AK (2006) Solution structure of the Vtsl SAM domain in the presence of RNA. J Mol Biol 356:1065–1072CrossRefGoogle Scholar
  5. Evans WAB, Powles JG (1967) Time-dependent Dyson expansion. Nuclear resonance signal in a rotating single crystal. Proc Phys Soc 92:1046–1054CrossRefADSGoogle Scholar
  6. Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204Google Scholar
  7. Haeberlen U, Waugh JS (1968) Coherent averaging effects in magnetic resonance. Phys Rev 175:453–467Google Scholar
  8. Hwang TL, Shaka AJ (1995) Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. J Magn Reson Ser A 112:275–279CrossRefGoogle Scholar
  9. Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665CrossRefGoogle Scholar
  10. Khaneja N, Li JS, Kehlet C, Luy B, Glaser SJ (2004) Broadband relaxation-optimized polarization transfer in magnetic resonance. Proc Natl Acad Sci USA 101:14742–14747Google Scholar
  11. Kupče E, Freeman R (1995) Adiabatic pulses for wide-band inversion and broad-band decoupling. J Magn Reson Ser A 115:273–276CrossRefGoogle Scholar
  12. Kupče E, Freeman R (1997) Compensation for spin-spin coupling effects during adiabatic pulses. J Magn Reson 127:36–48CrossRefADSGoogle Scholar
  13. Levitt MH (1982) Symmetrical composite pulse sequences for NMR population inversion. I. Compensation of radiofrequency field inhomogeneity. J Magn Reson 48:234–264Google Scholar
  14. Levitt MH (1986) Composite pulses. Prog NMR Spectrosc 18:61–122CrossRefADSGoogle Scholar
  15. Logan TM, Olejniczak ET, Xu RX, Fesik SW (1993) A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments. J Biomol NMR 3:225–231CrossRefGoogle Scholar
  16. Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J Magn Reson 85:393–399Google Scholar
  17. McCoy MA, Mueller L (1993) Selective decoupling. J Magn Reson Ser A 101:122–130CrossRefGoogle Scholar
  18. Mitschang L, Rinneberg H (2003) Broadband population inversion by a frequency-swept pulse beyond the adiabatic approximation. J Chem Phys 118:5496–5505ADSCrossRefGoogle Scholar
  19. Otting G, Wüthrich K (1990) Heteronuclear filters in two-dimensional [1H, 1H] NMR spectroscopy: combined use with isotope labeling for studies of macromolecular conformation and intermolecular interactions. Q Rev Biophys 23:39–96CrossRefGoogle Scholar
  20. Palmer AG, Cavanagh J, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR-spectroscopy. J Magn Reson 93:151–170Google Scholar
  21. Peterson RD, Theimer CA, Wu HH, Feigon J (2004) New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes. J Biomol NMR 28:59–67CrossRefGoogle Scholar
  22. Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sørensen OW, Griesinger C (1994) A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR 4:301–306CrossRefGoogle Scholar
  23. Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552Google Scholar
  24. Stuart AC, Borzilleri KA, Withka JM, Palmer AG (1999) Compensating for variations in 1H-13C scalar coupling constants in isotope-filtered NMR experiments. J Am Chem Soc 121:5346–5347CrossRefGoogle Scholar
  25. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114ADSCrossRefGoogle Scholar
  26. Zwahlen C, Legault P, Vincent SJF, Greenblatt J, Konrat R, Kay LE (1997) Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: Application to a bacteriophage λ N-peptide/boxB RNA complex. J Am Chem Soc 119:6711–6721CrossRefGoogle Scholar
  27. Zwahlen C, Vincent SJF, Kay LE (1998) Analytical description of the effect of adiabatic pulses on IS, I2S, and I3S spin systems. J Magn Reson 130:169–175ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Elizabeth R. Valentine
    • 1
  • Fabien Ferrage
    • 2
    • 3
  • Francesca Massi
    • 1
  • David Cowburn
    • 2
  • Arthur G. PalmerIII
    • 1
  1. 1.Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUSA
  2. 2.New York Structural Biology CenterNew YorkUSA
  3. 3.Département de ChimieCNRS UMR 8642 École normale supérieureParis Cedex 5France

Personalised recommendations