Journal of Biomolecular NMR

, Volume 37, Issue 2, pp 137–146 | Cite as

Effects of side-chain orientation on the 13C chemical shifts of antiparallel β-sheet model peptides

  • Myriam E. Villegas
  • Jorge A. Vila
  • Harold A. Scheraga
Article

Abstract

The dependence of the 13C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel β-sheet model peptide represented by the amino acid sequence Ac-(Ala)3-X-(Ala)12-NH2 where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel β-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the 13C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel β-sheet, there is (i) good agreement between computed and observed 13Cα and 13Cβ chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed 13Cα and 13Cβ chemical shifts as a function of χ1 for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed 13Cα chemical shifts on χξ (with ξ ≥ 2) compared to χ1 for eleven out of seventeen residues. Our results suggest that predicted 13Cα and 13Cβ chemical shifts, based only on backbone (φ,ψ) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into account.

Keywords

Chemical shift prediction Torsional side-chain effects Neighboring residue effects Structure calculations 

Notes

Acknowledgments

This research was supported by grants from the National Institutes of Health (GM-14312 and TW-6335), and the National Science Foundation (MCB00-03722). Support was also received from the National Research Council of Argentina (CONICET) [PIP-02485] and from the Universidad Nacional de San Luis [UNSL] (P-328402), Argentina. This research was conducted using the resources of two Beowulf-type clusters located at (a) the Instituto de Matemática Aplicada San Luis (CONICET-UNSL) and (b) the Baker Laboratory of Chemistry and Chemical Biology, Cornell University.

Supplementary material

References

  1. Burgess AW, Ponnuswamy PK, Scheraga HA (1974) Israel J Chem 12:239–286Google Scholar
  2. Chakrabarti P, Pal D (1998) Protein Eng 11:631–647CrossRefGoogle Scholar
  3. Chesnut DB, Moore KD (1989) J Comp Chem 10:648–659CrossRefGoogle Scholar
  4. Chothia C, Levitt M, Richardson D (1977) Proc Natl Acad Sci USA 74:4130–4134CrossRefADSGoogle Scholar
  5. Chothia C, Janin J (1981) Proc Natl Acad Sci USA 78:4146–4150CrossRefADSGoogle Scholar
  6. Chou K-C, Scheraga HA (1982) Proc Natl Acad Sci USA 79:7047–7051CrossRefADSGoogle Scholar
  7. Chou K-C, Pottle M, Némethy G, Ueda Y, Scheraga HA (1982) J Mol Biol 162:89–112CrossRefGoogle Scholar
  8. Chou PY, Fasman GD (1974) Biochemistry 13:211–222CrossRefGoogle Scholar
  9. Creighton TE (1984) Proteins: Structure and Molecular Properties. W.E. Freeman and Company, New York, pp. 186, 223Google Scholar
  10. Derrick JP, Wigley DB (1994) J Mol Biol 243:906–918CrossRefGoogle Scholar
  11. Dumbrack RL Jr, Karplus M (1993) J Mol Biol 230:543–574CrossRefGoogle Scholar
  12. Dumbrack RL Jr, Karplus M (1994) Nat Struct Biol 1:334–340CrossRefGoogle Scholar
  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.7, Inc., Pittsburgh, PAGoogle Scholar
  14. Havlin RH, Le H, Laws DD, de Dios AC, Oldfield E (1997) J Am Chem Soc 119:11951–11958CrossRefGoogle Scholar
  15. Hehre WJ, Radom L, Schleyer P, Pople JA (1986) Ab Initio Molecular Orbital Theory. John Wiley and Sons, New YorkGoogle Scholar
  16. Iwadate M, Asakura T, Williamson MP (1999) J Biomol NMR 13:199–211CrossRefGoogle Scholar
  17. Kruskal JB Jr (1956) Proc American Math Soc 7:48–50CrossRefMathSciNetGoogle Scholar
  18. Kuszewski J, Qin JA, Gronenborn AM, Clore GM (1995) J Magn Reson Ser B 106:92–96CrossRefGoogle Scholar
  19. Laws DD, Le H, de Dios AC, Havlin RH, Oldfield E (1995) J Am Chem Soc 117:9542–9546CrossRefGoogle Scholar
  20. McGregor JM, Islam SA, Sternberg MJE (1987) J Mol Biol 198:295–310CrossRefGoogle Scholar
  21. Némethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S, Scheraga HA (1992) J Phys Chem 96:6472–6484CrossRefGoogle Scholar
  22. Pauling LC, Corey RB (1951) Proc Natl Acad Sci USA 37:729–740CrossRefADSGoogle Scholar
  23. Pauling LC, Corey RB (1953) Proc R Soc London Ser B 141:21–33ADSCrossRefGoogle Scholar
  24. Pearson JG, Le H, Sanders LK, Godbout N, Havlin RH, Oldfield E (1997) J Am Chem Soc 119:11941–11950CrossRefGoogle Scholar
  25. Ripoll DR, Scheraga HA (1988) Biopolymers 27:1283–1303CrossRefGoogle Scholar
  26. Ripoll DR, Vila JA, Scheraga HA (2005) Proc Natl Acad Sci USA 102:7559–7564CrossRefADSGoogle Scholar
  27. Rossmeisl J, Nørskov JK, Jacobsen KW (2004) J Am Chem Soc 126:13140–13143CrossRefGoogle Scholar
  28. Santiveri CM, Rico M, Jiménez MA (2001) J Biom NMR 19:331–345CrossRefGoogle Scholar
  29. Sibanda BL, Thornton JM (1991) Methods Enzymol 202:59–82CrossRefGoogle Scholar
  30. Sosa CP, Ochterski J, Carpenter J, Frisch MJ (1998) J Comp Chem 19:1053–1063CrossRefGoogle Scholar
  31. Spera S, Bax A (1991) J Am Chem Soc 113:5490–5492CrossRefGoogle Scholar
  32. Ulmer TS, Ramirez BE, Delaglio F, Bax A (2003) J Am ChemSoc 125:9179–9191CrossRefGoogle Scholar
  33. Vila JA, Ripoll DR, Baldoni HA, Scheraga HA (2002) J Biomol NMR 24:245–262CrossRefGoogle Scholar
  34. Vila JA, Baldoni HA, Ripoll DR, Scheraga HA (2003) J Biomol NMR 26:113–130CrossRefGoogle Scholar
  35. Vila JA, Baldoni HA, Scheraga HA (2004a) Protein Sci 13:2939–2948CrossRefGoogle Scholar
  36. Vila JA, Baldoni HA, Scheraga HA (2004b) Proteins: Struct Funct Bioinf 57:87–98CrossRefGoogle Scholar
  37. Wang Y, Jardetzky O (2002) Protein Sci 11:852–861CrossRefGoogle Scholar
  38. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson JH, Oldfield E, Markley JL, Sykes BD. (1995) J Biomol NMR 6:135–140CrossRefGoogle Scholar
  39. Xu X-P, Case DA (2001) J Biomol NMR 21:321–333CrossRefGoogle Scholar
  40. Xu X-P, Case DA (2002) Biopolymers 65:408–423CrossRefGoogle Scholar
  41. Zhang C, Kim S-H (2000) J Mol Biol 299:1075–1089CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Myriam E. Villegas
    • 1
  • Jorge A. Vila
    • 1
    • 2
  • Harold A. Scheraga
    • 2
  1. 1.Facultad de Ciencias Físico Matemáticas y Naturales, Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis, CONICETSan LuisArgentina
  2. 2.Baker Laboratory of Chemistry and Chemical BiologyCornell UniversityIthacaUSA

Personalised recommendations