Journal of Biomolecular NMR

, Volume 36, Issue 3, pp 157–168 | Cite as

Random sampling of evolution time space and Fourier transform processing

  • Krzysztof Kazimierczuk
  • Anna Zawadzka
  • Wiktor Koźmiński
  • Igor Zhukov


Application of Fourier Transform for processing 3D NMR spectra with random sampling of evolution time space is presented. The 2D FT is calculated for pairs of frequencies, instead of conventional sequence of one-dimensional transforms. Signal to noise ratios and linewidths for different random distributions were investigated by simulations and experiments. The experimental examples include 3D HNCA, HNCACB and 15N-edited NOESY-HSQC spectra of 13C 15N labeled ubiquitin sample. Obtained results revealed general applicability of proposed method and the significant improvement of resolution in comparison with conventional spectra recorded in the same time.

Key words

fast multidimensional NMR Fourier Transform random sampling ubiquitin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors are grateful to Prof. Andrew R. Byrd (Structural Biophysics Laboratory, National Cancer Institute-Frederick, Frederick, Maryland, USA) for the sample of 13C, 15N-double labeled human ubiquitin.


  1. Armstrong G.S., Mandelshtam V.A., Shaka A.J., Bendiak B. (2005) J. Magn. Reson. 173:160–168CrossRefADSGoogle Scholar
  2. Barna, J.C.J., Laue, E.D., Mayger, M.R., Skilling, J., Worrall, S.J.P. (1987) J. Magn. Reson., 73, 69–77Google Scholar
  3. Berkovitz A., Rusnak I. (1992) IEEE Trans. Signal Process. 40:2816–2819CrossRefADSGoogle Scholar
  4. Bodenhausen G., Ernst R.R. (1981) J. Magn. Reson. 45:367–373Google Scholar
  5. Bodenhausen G., Ernst R.R. (1982) J. Am. Chem. Soc. 104:1304–1309CrossRefGoogle Scholar
  6. Coggins B.E., Venters R.A., Zhou P. (2004) J. Am. Chem. Soc. 126:1000–1001CrossRefGoogle Scholar
  7. Coggins B.E., Venters R.A., Zhou P. (2005) J. Am. Chem. Soc. 127:11562–11563CrossRefGoogle Scholar
  8. Delsuc M.A., Tramesel D. (2006) CR Chim. 9:364–373CrossRefGoogle Scholar
  9. Ding K., Gronenborn A.M. (2002) J. Magn. Reson. 156:262–268CrossRefADSGoogle Scholar
  10. Dutt A., Rokhlin V. (1995) Appl. Comp. Harm. Anal. 2:85–100zbMATHMathSciNetCrossRefGoogle Scholar
  11. Eghbalnia H.R., Bahrami A., Tonelli M., Hallenga K., Markley J.L. (2005) J. Am. Chem. Soc. 127:12528–12536CrossRefGoogle Scholar
  12. Ernst R.R., Anderson W.A. (1966) Rev. Sci. Instrum. 37:93–102CrossRefADSGoogle Scholar
  13. Ferreira P. (1999) IEEE Trans. Circuits Syst. II 46:475–478zbMATHCrossRefGoogle Scholar
  14. Freeman R., Kupče Ē. (2003) J. Biomol. NMR 27:101–113CrossRefGoogle Scholar
  15. Frueh D.P., Sun Z.-Y. J., Vosburg D.A., Walsh C.T., Hoch J.C., Wagner G. (2006) J. Am. Chem. Soc. 128:5757–5763CrossRefGoogle Scholar
  16. Frydman L., Scherf T., Lupulescu A. (2002) Proc. Natl. Acad. Sci. USA 99: 15858–15662CrossRefADSGoogle Scholar
  17. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M. and Rossi, F. (2003) GNU Scientific Library Reference Manual, 2nd edn. Network Theory Ltd. ISBN 0954161734Google Scholar
  18. Goddard, T.D. and Kneller, D.G. (2002) SPARKY 3. University of California, San Francisco, Scholar
  19. Hamilton W.R. (1847) Proc. Roy. Irish Acad. 3:1–16Google Scholar
  20. Kazimierczuk K., Koźmiński W., Zhukov I. (2006) J. Magn. Reson. 179:323–328CrossRefADSGoogle Scholar
  21. Kim S., Szyperski T. (2003) J. Am. Chem. Soc. 125:1385–1393CrossRefGoogle Scholar
  22. Koźmiński W., Zhukov I. (2003) J. Biomol. NMR 26:157–166CrossRefGoogle Scholar
  23. Kupče Ē., Freeman R. (2003) J. Am. Chem. Soc. 125:13958–13959CrossRefGoogle Scholar
  24. Kupče Ē., Freeman R. (2004a) J. Biomol. NMR 28:391–395CrossRefGoogle Scholar
  25. Kupče Ē., Freeman R. (2004b) Concept Magnetic Res. 22A:4–11CrossRefGoogle Scholar
  26. Lauterbur P.C. (1973) Nature 242:190–191CrossRefADSGoogle Scholar
  27. Luan T., Jaravine V., Yee A., Arrowsmith C.H., Orekhov V.Y. (2005) Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J. Biomol. NMR 33:1–14CrossRefGoogle Scholar
  28. Mandelshtam V.A., Taylor H.S., Shaka A.J. (1998) J. Magn. Reson. 133:304–312CrossRefGoogle Scholar
  29. Malmodin D., Billeter M. (2005a) J. Magn. Reson. 176:47–53CrossRefADSGoogle Scholar
  30. Malmodin D., Billeter M. (2005b) J. Am. Chem. Soc. 127:13486–13487CrossRefGoogle Scholar
  31. Marion D. (2005) J. Biomol. NMR 32: 141–150CrossRefGoogle Scholar
  32. Marvasti F. (1996) IEEE Trans. Signal Process. 44:572–576CrossRefADSGoogle Scholar
  33. Marvasti F. (2001) Nonuniform Sampling, Theory and Practice. New York, Kluwer/PlenumzbMATHGoogle Scholar
  34. Orekhov V., Ibraghimov I., Billeter M. (2003) J. Biomol. NMR 27:165–173CrossRefGoogle Scholar
  35. Rovnyak D., Frueh D.P., Sastry M., Sun Z.Y.J., Stern A.S., Hoch J.C., Wagner G. (2004) J. Magn. Reson. 170:15–21CrossRefADSGoogle Scholar
  36. Sattler M., Schleuchter J., Griesinger C. (1999) Prog. NMR Spectrosc. 34:93–158CrossRefGoogle Scholar
  37. Sun Z.Y.J., Frueh D.P., Selenko P., Hoch J.C., Wagner G. (2005) J. Biomol. NMR 33:43–50CrossRefGoogle Scholar
  38. Szyperski T., Yeh D.C., Sukumaran D.K., Moseley H.N.B., Montelione G.T. (2002) Proc. Natl. Acad. Sci. USA 99:8009–8014CrossRefADSGoogle Scholar
  39. Tarczynski A., Allay N. (2004) IEEE Trans. Signal Process. 52:3324–3334MathSciNetCrossRefADSGoogle Scholar
  40. Tarczyński A., Qu D. (2005) Int. J. Appl. Math. Comput. Sci. 15:463–469MathSciNetzbMATHGoogle Scholar
  41. Tugarinov V., Kay L.E., Ibraghimov I., Orekhov V.Y. (2005) J. Am. Chem. Soc. 127:2767–2775CrossRefGoogle Scholar
  42. Yeh T. (1997) Appl. Math. Comp. 87: 227–246zbMATHCrossRefGoogle Scholar
  43. Yoon J.W., Godsill S., Kupče Ē., Freeman R. (2006) Magn. Reson. Chem. 44:197–209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Krzysztof Kazimierczuk
    • 1
  • Anna Zawadzka
    • 1
    • 2
  • Wiktor Koźmiński
    • 1
  • Igor Zhukov
    • 3
  1. 1.Department of ChemistryWarsaw UniversityWarszawaPoland
  2. 2.Department of BiophysicsInstitute of Experimental Physics, Warsaw UniversityWarszawaPoland
  3. 3.Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations