Journal of Biomolecular NMR

, Volume 36, Issue 1, pp 37–44 | Cite as

A simple and reliable approach to docking protein–protein complexes from very sparse NOE-derived intermolecular distance restraints

Article

Abstract

A simple and reliable approach for docking protein–protein complexes from very sparse NOE-derived intermolecular distance restraints (as few as three from a single point) in combination with a novel representation for an attractive potential between mapped interaction surfaces is described. Unambiguous assignments of very sparse intermolecular NOEs are obtained using a reverse labeling strategy in which one the components is fully deuterated with the exception of selective protonation of the δ-methyl groups of isoleucine, while the other component is uniformly 13C-labeled. This labeling strategy can be readily extended to selective protonation of Ala, Leu, Val or Met. The attractive potential is described by a ‘reduced’ radius of gyration potential applied specifically to a subset of interfacial residues (those with an accessible surface area  ≥ 50% in the free proteins) that have been delineated by chemical shift perturbation. Docking is achieved by rigid body minimization on the basis of a target function comprising the sparse NOE distance restraints, a van der Waals repulsion potential and the ‘reduced’ radius of gyration potential. The method is demonstrated for two protein–protein complexes (EIN–HPr and IIAGlc–HPr) from the bacterial phosphotransferase system. In both cases, starting from 100 different random orientations of the X-ray structures of the free proteins, 100% convergence is achieved to a single cluster (with near identical atomic positions) with an overall backbone accuracy of ~2 Å. The approach described is not limited to NMR, since interfaces can also be mapped by alanine scanning mutagenesis, and sparse intermolecular distance restraints can be derived from double cycle mutagenesis, cross-linking combined with mass spectrometry, or fluorescence energy transfer.

Keywords

protein docking sparse NOE data reverse isotope labeling deuteration ‘reduced’ radius of gyration rigid body minimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the intramural program of NIH, NIDDK and the AIDS Targeted Antiviral Program of the Office of the Director of NIH (to G.M.C.).

References

  1. Bax A., Grishaev A. (2005). Curr. Op. Struct. Biol. 15:563–570CrossRefGoogle Scholar
  2. Bonvin A.M.J.J., Boelens R., Kaptein R. (2005). Curr. Op. Chem. Biol. 9:501–508CrossRefGoogle Scholar
  3. Cai M., Williams D.C., Wang G., Lee B.R., Peterkofsky A., Clore G.M. (2003). J. Biol. Chem. 278:25191–25206CrossRefGoogle Scholar
  4. Clore G.M. (2000). Proc. Natl. Acad. Sci. U.S.A. 97:9021–9025CrossRefADSGoogle Scholar
  5. Clore G.M., Gronenborn A.M. (1995). Crit. Rev. Biochem. Mol. Biol. 30:351–385CrossRefGoogle Scholar
  6. Clore G.M., Gronenborn A.M. (1998). Trends Biotech. 16:22–34CrossRefGoogle Scholar
  7. Clore G.M., Schwieters C.D. (2003). J. Am. Chem. Soc. 125:2902–2912CrossRefGoogle Scholar
  8. Clore G.M., Gronenborn A.M., Nilges M., Ryan C. (1987). Biochemistry 26:8012–8023CrossRefGoogle Scholar
  9. Cornilescu G., Lee B.R., Cormilescu C.C., Wang G., Peterkofsky A., Clore G.M. (2002). J. Biol. Chem. 277:42289–42298CrossRefGoogle Scholar
  10. Delaglio G., Grzesiek S., Vuister G., Zhu G., Pfeifer J., Bax A. (1995). J. Biomol. NMR 6:27–93CrossRefGoogle Scholar
  11. Dominguez C., Boelens R., Bonvin A.M.J.J. (2003). J. Am. Chem. Soc. 125:1731–1737CrossRefGoogle Scholar
  12. Fahmy A., Wagner G. (2002). J. Am. Chem. Soc. 124:1241–1250CrossRefGoogle Scholar
  13. Feese M.D., Comolli L., Meadow N.D., Roseman S., Remington S.J. (1997). Biochemistry 36:16087–16096CrossRefGoogle Scholar
  14. Garrett D.S., Powers R., Gronenborn A.M., Clore G.M. (1991). J. Magn. Reson. 95:214–220Google Scholar
  15. Garrett D.S., Seok Y.-J., Peterkofsky A., Gronenborn A.M., Clore G.M. (1999). Nature Struct. Biol. 6:166–173CrossRefGoogle Scholar
  16. Goto N.K., Gardner K.H., Mueller G.A., Willis R.C., Kay L.E. (1996). J. Biomol. NMR 13:369–374CrossRefGoogle Scholar
  17. Jia Z., Quail J.W., Waygood E.B., Delbaere L.T. (1993). J. Biol. Chem. 268:22490–22501Google Scholar
  18. Jones J.T., Ballinger M.D., Pisacane P.I., Lofgren J.A., Fitzpatrick V.D., Fairbrother W.J., Wells J.A., Sliwkowski M.X. (1998). J. Biol. Chem. 273, 1667–1674Google Scholar
  19. Kato K., Matsunaga C., Igarashi T., Kim H., Odaka A., Shimada I., Arata Y. (1991). Biochemistry 30:270–278CrossRefGoogle Scholar
  20. Kuszewski J., Gronenborn A.M., Clore G.M. (1999). J. Am. Chem. Soc. 121:2337–2338CrossRefGoogle Scholar
  21. Kuszewski J., Schwieters C.D., Garrett D.S., Byrd R.A., Tjandra N., Clore G.M. (2004). J. Am. Chem. Soc. 126:6258–6273CrossRefGoogle Scholar
  22. Liao D.I., Silverton E., Seok Y.-J., Lee B.R., Peterkofsky A., Davies D.R. (1996). Structure 4:861–872CrossRefGoogle Scholar
  23. Mendez R., Leplae R., Lensink M.F., Wodak S.J. (1995). Proteins 60:150–169CrossRefGoogle Scholar
  24. Mueller G.A., Kirby T.W., deRose E.F., London R.E. (2003). J. Magn. Reson. 165:237–247CrossRefADSGoogle Scholar
  25. Nilges M., Gronenborn A.M., Brünger A.T., Clore G.M. (1988). Protein Eng. 2:27–38CrossRefGoogle Scholar
  26. Russell R.B., Alber F., Aloy P., Davis F.P., Korkin D., Pichaud M., Topf M., Sali A. (2004). Curr. Op. Struct. Biol. 14:313–324CrossRefGoogle Scholar
  27. Schulz D.M., Ihling C., Clore G.M., Sinz A. (2004). Biochemistry 43:4703–4715CrossRefGoogle Scholar
  28. Schwieters C.D., Clore G.M. (2001). J. Magn. Reson. 152:288–302CrossRefADSGoogle Scholar
  29. Schwieters C.D., Kuszewski J., Tjandra N., Clore G.M. (2003). J. Magn. Reson. 160:66–74CrossRefADSGoogle Scholar
  30. Schwieters C.D., Kuszewski J., Clore G.M. (2006). Progr. Nucl. Magn. Reson. Spectr. 48:47–62CrossRefGoogle Scholar
  31. Schreiber G., Fersht A.R. (1995). J. Mol. Biol. 248:478–486Google Scholar
  32. Suh J.-Y., Cai M., Williams D.C., Clore G.M. (2006). J. Biol. Chem. 281:8939–8949CrossRefGoogle Scholar
  33. Takeuchi K., Wagner G. (2006). Curr. Op. Struct. Biol. 16:109–117CrossRefGoogle Scholar
  34. Tang C., Iwahara J., Clore G.M. (2005). J. Biomol. NMR 33:105–121CrossRefGoogle Scholar
  35. Trester-Zedlitz M., Kamada K., Burley S.K., Fenyo D., Chait B.T., Muir T.W. (2003). J. Am. Chem. Soc. 125:2416–2425CrossRefGoogle Scholar
  36. van Dijk A.D.J., Boelens R., Bonvin A.M.J.J. (2005). FEBS J. 272:293–312CrossRefGoogle Scholar
  37. Wang C., Shueler-Forman O., Baker D. (2005). Protein Sci. 14:1328–1339CrossRefGoogle Scholar
  38. Wang G., Louis J.M., Sondej M., Seok Y.-J., Peterkofsky A., Clore G.M. (2000). EMBO J. 19:5635–5649CrossRefGoogle Scholar
  39. Williams D.C., Cai M., Clore G.M. (2004). J. Biol. Chem. 279:1449–1457CrossRefGoogle Scholar
  40. Williams D.C., Cai M., Suh J.-Y., Peterkofsky A., Clore G.M. (2005). J. Biol. Chem. 280:20775–20784CrossRefGoogle Scholar
  41. Wells J.A. (1996). Proc. Natl. Acad. Sci. U.S.A. 93:1–6CrossRefADSGoogle Scholar
  42. Wüthrich K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New YorkGoogle Scholar
  43. Yu L., Sun C., Song D., Shen J., Xu N., Gunasekera A., Hajduk P.J., Olejniczak E.T. (2005). Biochemistry 44:15834–15841CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations