Advertisement

Journal of Biomolecular NMR

, Volume 35, Issue 2, pp 137–147 | Cite as

Dynamics of transportan in bicelles is surface charge dependent

  • Elsa Bárány-Wallje
  • August Andersson
  • Astrid Gräslund
  • Lena Mäler
Article

Abstract

In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide 15N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S 2 is on average 0.11 ± 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of 1H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected.

Keywords

bicelle cell-penetrating peptide dynamics NMR transportan 

Abbreviations:

CPMG

Carr-Purcell-Meiboom-Gill

CPP

cell-penetrating peptide

DHPC

1,2-dihexanoyl-sn-glycero-3-phosphocholine

DHPC-d22

deuterated 1,2-dihexanoyl-sn-glycero-3-phosphocholine

DMPC

1,2-dimyristoyl-sn-glycero-3-phosphocholine

DMPC-d54

deuterated 1,2-dimyristoyl-sn-glycero-3-phosphocholine

DMPG-d54

deuterated 1,2-dimyrisotoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]

HSQC

heteronuclear single quantum coherence

NMR

nuclear magnetic resonance

NOE

nuclear Overhauser enhancement

PNAs

peptide nucleic acids

siRNA

small interfering RNA

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We wish to thank Joshua Hicks for helpful insights and careful reading of the manuscript. This work is supported by grants from the Swedish Research Council and the Carl Trygger Foundation.

Supplementary material

References

  1. Andersson A., Almqvist J., Hagn F., Mäler L. (2004) Biochim. Biophys. Acta. 1661:18–25CrossRefGoogle Scholar
  2. Andersson A., Mäler L. (2003) FEBS Lett. 545:139–143CrossRefGoogle Scholar
  3. Andersson, A. and Mäler, L. (2005) Langmuir. 21:7702–7709CrossRefGoogle Scholar
  4. Bárány-Wallje E., Andersson A., Gräslund A., Mäler L. (2004) FEBS Lett. 567:265–269CrossRefGoogle Scholar
  5. Biverståhl H., Andersson A., Gräslund A., Mäler L. (2004) Biochemistry. 43:14940–14947CrossRefGoogle Scholar
  6. Callaghan P., Komlosh M., Nydén M. (1998) J. Magn. Reson. 133:177–182CrossRefADSGoogle Scholar
  7. Carr H.Y., Purcell E.M. (1954) Phys. Rev. 94:630–638CrossRefADSGoogle Scholar
  8. Damberg P., Jarvet J., Gräslund A. (2001) J. Magn. Reson. 148:343–348CrossRefADSGoogle Scholar
  9. Derossi D., Chassaing G., Prochiantz A. (1998) Trends Cell Biol. 8:84–87CrossRefGoogle Scholar
  10. Deshayes S., Morris M.C., Divita G., Heitz F. (2005) Cell. Mol. Life Sci. 62:1839–1849CrossRefGoogle Scholar
  11. Drin G., Cottin S., Blanc E., Rees A.R., Temsamani J. (2003) J. Biol. Chem. 278:31192–31201CrossRefGoogle Scholar
  12. Glover K.J., Whiles J.A., Wu G., Yu N.-J., Deems R., Struppe J.O., Stark R.E., Komives E.A., Vold R.R. (2001) Biophys. J. 81:2163–2171Google Scholar
  13. Greenfield N, Fasman G.D. (1969) Biochemistry. 8:4108–4116CrossRefGoogle Scholar
  14. Järver P, Langel Ü. (2004) Drug Discov. Today. 9:395–402CrossRefGoogle Scholar
  15. Jones S.W., Christison R., Bundell K., Voyce C.J., Brockbank S.M.V., Newham P., Lindsay M.A. (2005) Br. J. Pharmacol. 145:1093–1102CrossRefGoogle Scholar
  16. Kay L.E., Keifer P., Saarinen T. (1992) J. Am. Chem. Soc. 114:10663–10665CrossRefGoogle Scholar
  17. Lakowicz J.R. (1999) Principles of Fluorescence Spectroscopy 2nd edn. Kluwer Academic, New YorkGoogle Scholar
  18. Lee L.K., Rance M., Chazin W.J., Palmer III A.G. (1997) J. Biomol. NMR. 9:287–298CrossRefGoogle Scholar
  19. Lipari G., Szabo A. (1982a) J. Am. Chem. Soc. 104:4546–4559CrossRefGoogle Scholar
  20. Lipari G., Szabo A. (1982b) J. Am. Chem. Soc. 104:4559–4570CrossRefGoogle Scholar
  21. Lundberg M., Johansson M. (2002) Biochem. Biophys. Res. Commun. 291:367–371CrossRefGoogle Scholar
  22. Magzoub M., Gräslund A. (2004) Q. Rev. Biophys. 37:147–195CrossRefGoogle Scholar
  23. Magzoub M., Kilk K., Eriksson L.E.G., Langel Ü., Gräslund A. (2001) Biochim. Biophys. Acta 1516:77–89Google Scholar
  24. Mandel A.M., Akke M., Palmer III A.G. (1995) J. Mol. Biol. 246:144–163CrossRefGoogle Scholar
  25. Meiboom S., Gill D. (1958) Rev. Sci. Instrum. 29:688–691CrossRefADSGoogle Scholar
  26. Palmer III A.G., Kroenke C.D., Loria P.J. (2001) Meth. Enzymol. 339:204–238CrossRefGoogle Scholar
  27. Palmer III A.G., Rance M., Wright P. (1991) J. Am. Chem. Soc. 113:4371–4380CrossRefGoogle Scholar
  28. Papadopoulos, E., Oglecka, K., Mäler, L., Jarvet, J., Wright, P.E., Dyson, J. and Gräslund, A. (2006) Biochemistry 45, 159–166Google Scholar
  29. Pooga M., Hällbrink M., Zorko M., Langel Ü. (1998) FASEB J. 12:67–77Google Scholar
  30. Richard J.P., Melikov K., Vives E., Ramos C., Verbeure B., Gait M.J., Chernomordik L.V., Lebleu B. (2003) J. Biol. Chem. 278:585–590CrossRefGoogle Scholar
  31. Sakai N., Matile S. (2003) J. Am. Chem. Soc. 125:14348–14356CrossRefGoogle Scholar
  32. Skelton N.J., Palmer III A.G., Akke M., Kördel J., Rance M., Chazin W.J. (1993) J. Magn. Reson. B. 102:253–264CrossRefGoogle Scholar
  33. Stejskal E.O., Tanner J.E. (1965) J. Chem. Phys. 42:288–292CrossRefADSGoogle Scholar
  34. Struppe J., Whiles J.A., Vold R.R. (2000) Biophys. J. 78:281–289CrossRefGoogle Scholar
  35. Terrone D., Sang S.L.W., Roudaia L., Silvius J.R. (2003) Biochemistry. 42:13787–13799CrossRefGoogle Scholar
  36. Vold R.R., Prosser R.S. (1996) J. Magn. Reson. B. 113:267–271CrossRefGoogle Scholar
  37. Vold R.R., Prosser S.R., Deese A.J. (1997) J. Biomol. NMR. 9:329–335CrossRefGoogle Scholar
  38. Wang C., Grey M.J., Palmer III A.G. (2001) J. Biomol. NMR. 21:361–366CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Elsa Bárány-Wallje
    • 1
  • August Andersson
    • 1
  • Astrid Gräslund
    • 1
  • Lena Mäler
    • 1
  1. 1.Department of Biochemistry and Biophysics, The Arrhenius LaboratoriesStockholm UniversityStockholmSweden

Personalised recommendations