Heteronuclear multidimensional NMR and homology modelling studies of the C-terminal nucleotide-binding domain of the human mitochondrial ABC transporter ABCB6

  • Kaori Kurashima-Ito
  • Teppei Ikeya
  • Hiroshi Senbongi
  • Hidehito Tochio
  • Tsutomu Mikawa
  • Takehiko Shibata
  • Yutaka Ito
Article

Abstract

Human ATP-binding cassette, sub-family B, member 6 (ABCB6) is a mitochondrial ABC transporter, and presumably contributes to iron homeostasis. Aimed at understanding the structural basis for the conformational changes accompanying the substrate-transportation cycle, we have studied the C-terminal nucleotide-binding domain of ABCB6 (ABCB6-C) in both the nucleotide-free and ADP-bound states by heteronuclear multidimensional NMR and homology modelling. A non-linear sampling scheme was utilised for indirectly acquired 13C and 15N dimensions of all 3D triple-resonance NMR experiments, in order to overcome the instability and the low solubility of ABCB6-C. The backbone resonances for approximately 25% of non-proline residues, which are mostly distributed around the functionally important loops and in the Helical domain, were not observed for nucleotide-free form of ABCB6-C. From the pH, temperature and magnetic field strength dependencies of the resonance intensities, we concluded that this incompleteness in the assignments is mainly due to the exchange between multiple conformations at an intermediate rate on the NMR timescale. These localised conformational dynamics remained in ADP-bound ABCB6-C except for the loops responsible for adenine base and α/β-phosphate binding. These results revealed that the localised dynamic cooperativity, which was recently proposed for a prokaryotic ABC MJ1267, also exists in a higher eukaryotic ABC, and is presumably shared by all members of the ABC family. Since the Helical domain is the putative interface to the transmembrane domain, this cooperativity may explain the coupled functions between domains in the substrate-transportation cycle.

Keywords

ABC transporter mitochondria NMR nucleotide recognition 

References

  1. Allikmets R., Raskind W.H., Hutchinson A., Schueck N.D., Dean M. and Koeller D.M. (1999). Hum. Mol. Gen. 8: 743–749CrossRefGoogle Scholar
  2. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W. and Lipman D.J. (1997). Nucleic.Acids.Res. 25: 3389–3402CrossRefGoogle Scholar
  3. Barna J.C., Laue E.D., Mayger M.R., Skilling J. and Worrall S.J.P. (1987). J. Magn. Reson. 73: 69–77Google Scholar
  4. Bax A. and Ikura M. (1991). J. Biomol.NMR 1: 99–104CrossRefGoogle Scholar
  5. Beinert H. and Kiley P.J. (1999). Curr. Opin. Chem. Biol. 3: 152–157CrossRefGoogle Scholar
  6. Beinert H., Holm R.H. and Munck E. (1997). Science 277: 653–659CrossRefGoogle Scholar
  7. Canutescu A.A., Shelenkov A.A. and Dunbrack R.L., Jr. (2003). Protein Sci. 12: 2001–2014CrossRefGoogle Scholar
  8. Chang G. (2003). J. Mol. Biol. 330: 419–430CrossRefGoogle Scholar
  9. Chang G. and Roth C.B. (2001). Science 293: 1793–1800CrossRefADSGoogle Scholar
  10. Chen C.-A. and Cowan J.A. (2003). J. Biol. Chem. 278: 52681–52688CrossRefGoogle Scholar
  11. Clubb R.T., Thanabal V. and Wagner G. (1992). J. Magn. Reson. 97: 213–217Google Scholar
  12. Csere P., Lill R. and Kispal G. (1998). FEBS Lett. 441: 266–270CrossRefGoogle Scholar
  13. Dean M., Rzhetsky A. and Allikmets R. (2001). Genome Res. 7: 1156–1166CrossRefGoogle Scholar
  14. Gaudet R. and Wiley D.C. (2001). EMBO J. 20: 4964–4972CrossRefGoogle Scholar
  15. Geyer M., Schweins T., Herrmann C., Prisner T., Wittinghofer A. and Kalbitzer H.R. (1996). Biochemistry 35: 10308–10320CrossRefGoogle Scholar
  16. Golovanov A.P., Hautbergue G.M., Wilson S.A. and Lian L.Y. (2004). J. Am. Chem. Soc. 126: 8933–8939CrossRefGoogle Scholar
  17. Grzesiek S. and Bax A. (1992). J. Magn. Reson. 96: 432–440Google Scholar
  18. Grzesiek S., Anglister J., Ren H. and Bax A. (1993). J. Am. Chem. Soc. 115: 4369–4370CrossRefGoogle Scholar
  19. Higgins C.F. and Linton K.J. (2004). Nat. Struct. Mol. Biol. 11: 918–926CrossRefGoogle Scholar
  20. Holland I.B. and Blight M.A.(1999). J. Mol. Biol. 22: 381–399CrossRefGoogle Scholar
  21. Hopfner K.P., Karcher A., Shin D.S., Craig L., Arthur L.M., Carney J.P. and Tainer J.A. (2000). Cell 101: 789–800CrossRefGoogle Scholar
  22. Hung L.W., Wang I.X., Nikaido K., Liu P.Q., Ames G.F. and Kim S.H. (1998). Nature 396: 703–707CrossRefADSGoogle Scholar
  23. Ikura M., Kay L.E. and Bax A. (1990). Biochemistry 29: 4659–4667CrossRefGoogle Scholar
  24. Ito Y., Yamasaki K., Iwahara J., Terada T., Kamiya A., Shirouzu M., Muto Y., Kawai G., Yokoyama S., Laue E.D., Wälchli M., Shibata T., Nishimura S. and Miyazawa T. (1997). Biochemistry 36: 9109–9119CrossRefGoogle Scholar
  25. James L.C. and Tawfik D.S. (2003). Trends. Biochem. Sci. 28: 361–368CrossRefGoogle Scholar
  26. Karpowich N., Martsinkevich O., Millen L., Yuan Y.-R., Dai P.L., MacVey K., Thomas P.J. and Hunt J.F. (2001). Structure 9: 571–586CrossRefGoogle Scholar
  27. Kelly A., Powis S.H., Kerr L.A., Mockridge I., Elliott T., Bastin J., Uchanska-Ziegler B., Ziegler A., Trowsdale J. and Townsend A. (1992). Nature 355: 641–644CrossRefADSGoogle Scholar
  28. Kispal G., Csere P., Guiard B. and Lill R. (1997). FEBS Lett. 418: 346–350CrossRefGoogle Scholar
  29. Kispal G., Csere P., Prohl C. and Lill R. (1999). EMBO J. 18: 3981–3989CrossRefGoogle Scholar
  30. Kraulis P.J. (1989). J. Magn. Reson. 24: 627–633Google Scholar
  31. Kraulis P.J., Domaille P.J., Campbell-Burk S.L., van Aken T. and Laue E.D. (1994) Biochemistry 33: 3515–3531CrossRefGoogle Scholar
  32. Laue E.D., Mayger M.R. Skilling J. and Staunton J. (1996). J. Magn. Reson. 68: 14–29Google Scholar
  33. Leighton J. and Schatz G. (1995). EMBO J. 14: 188–195Google Scholar
  34. Lewis H.A., Buchanan S.G., Burley S.K., Conners K., Dickey M., Dorwart M., Fowler R., Gao X., Guggino W.B., Hendrickson W.A., Hunt J.F., Kearins M.C., Lorimer D., Maloney. P.C., Post K.W., Rajashankar K.R., Rutter M.E., Sauder J.M., Shriver S., Thibodeau P.H., Thomas P.J., Zhang M., Zhao X. and Emtage S. (2004). EMBO J. 23: 282–293CrossRefGoogle Scholar
  35. Madej T., Gibrat J.F. and Bryant S.H. (1995). Proteins 23: 356–369CrossRefGoogle Scholar
  36. Matsuo H., Li H. and Wagner G. (1996). J. Magn. Reson. Ser. B 110: 112–115CrossRefGoogle Scholar
  37. Mitsuhashi N., Miki T., Senbongi H., Yokoi N., Yano H., Miyazaki M., Nakajima N., Iwanaga T., Yokoyama Y., Shibata T. and Seino S. (2000). J. Biol. Chem. 275: 17536–17540CrossRefGoogle Scholar
  38. Pervushin K., Riek R., Wider G. and Wüthrich K. (1997). Proc. Natl. Acad. Sci. USA 94: 12366–12371CrossRefADSGoogle Scholar
  39. Rovnyak D., Frueh D.P., Sastry M., Sun Z.Y., Stern A.S., Hoch J.C. and Wagner G. (2004). J. Magn. Reson. 170: 15–21CrossRefADSGoogle Scholar
  40. Šali A. and Blundell T.L. (1993). J. Mol. Biol. 234: 779–815CrossRefGoogle Scholar
  41. Salzmann M., Wider G., Pervushin K. and Wüthrich K. (1999a). J. Biomol. NMR 15: 181–184CrossRefGoogle Scholar
  42. Salzmann M., Wider G., Pervushin K., Senn H. and Wüthrich K. (1999b). J. Am. Chem. Soc. 121: 844–848CrossRefGoogle Scholar
  43. Schmieder P., Stern A.S., Wagner G. and Hoch J.C. (1994). J.Biomol.NMR 4: 483–490CrossRefGoogle Scholar
  44. Schmitt L., Benabdelhak H., Blight M.A., Holland I.B. and Stubbs M.T. (2003). J. Mol. Biol. 330: 333–342CrossRefGoogle Scholar
  45. Schneider E. and Hunke S. (1998). FEMS Microbiol. Rev. 22: 1–20CrossRefGoogle Scholar
  46. Senbongi H., Ling F. and Shibata T. (1999). Mol. Gen. Genet. 262: 426–436CrossRefGoogle Scholar
  47. Smith P.C., Karpowich N., Millen L., Moody J.E., Rosen J., Thomas P.J. and Hunt J.F. (2002). Mol. Cell. 10: 139–149CrossRefGoogle Scholar
  48. Stohs S.J. and Bagchi D. (1995). Free Radic. Biol. Med. 18:321–336CrossRefGoogle Scholar
  49. Tomii K. and Akiyama Y. (2004). Bioinformatics 20: 594–595CrossRefGoogle Scholar
  50. van Veen H.W., Callaghan R., Soceneantu L., Sardini A., Konings W.N. and Higgins C.F. (1998). Nature 391: 291–295CrossRefADSGoogle Scholar
  51. Wang C.Y., Hunt J.F., Rance M. and Palmer A.G. (2002). J. Biomol. NMR 24: 167–168CrossRefGoogle Scholar
  52. Wang C., Karpowich N., Hunt J.F., Rance M. and Palmer A.G. (2004). J. Mol. Biol. 342: 525–537CrossRefGoogle Scholar
  53. Wishart D.S. and Sykes B.D. (1994). J. Biomol. NMR 4: 171–180CrossRefGoogle Scholar
  54. Wittekind M. and Mueller L. (1993). J. Magn. Reson. Ser. B 101: 201–205CrossRefGoogle Scholar
  55. Yamazaki T., Lee W., Revington M., Mattiello D.L., Dahlquist F.W., Arrowsmith C.H. and Kay L.E. (1994a). J. Am. Chem. Soc. 116: 6464–6465CrossRefGoogle Scholar
  56. Yamazaki T., Lee W., Arrowsmith C.H., Muhandiram D.R. and Kay L.E. (1994b). J. Am. Chem. Soc. 116: 11655–11666CrossRefGoogle Scholar
  57. Yuan Y.R., Blecker S., Martsinkevich O., Millen L., Thomas P.J. and Hunt J.F. (2001). J. Biol. Chem. 276: 32313–32321CrossRefGoogle Scholar
  58. Zhu G. and Bax A. (1990). J. Magn. Reson. 100: 202–207Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Kaori Kurashima-Ito
    • 1
    • 2
    • 4
  • Teppei Ikeya
    • 5
  • Hiroshi Senbongi
    • 1
    • 7
  • Hidehito Tochio
    • 3
  • Tsutomu Mikawa
    • 1
    • 2
    • 4
  • Takehiko Shibata
    • 1
    • 2
    • 8
  • Yutaka Ito
    • 1
    • 2
    • 4
    • 6
  1. 1.Cellular and Molecular Biology LaboratoryRIKENWako, SaitamaJapan
  2. 2.Molecular and Cellular Physiology LaboratoryInternational Graduate School of Arts and Sciences, Supramolecular Biology, Yokohama City UniversityYokohama, KanagawaJapan
  3. 3.Molecular Biophysics LaboratoryInternational Graduate School of Arts and Sciences, Supramolecular Biology, Yokohama City UniversityYokohama, KanagawaJapan
  4. 4.CREST/Japan Science and Technology Agency (JST)TokyoJapan
  5. 5.National Institute of Advanced Industrial Science and Technology (AIST),TokyoJapan
  6. 6.Department of ChemistryTokyo Metropolitan UniversityHachioji, TokyoJapan
  7. 7.Mitochondrial Diseases Group, MRC Dunn Human Nutrition UnitCambridgeUK
  8. 8.Shibata Distinguished Senior Scientist LaboratoryRIKENSaitamaJapan

Personalised recommendations