Advertisement

Journal of Biomolecular NMR

, Volume 32, Issue 3, pp 251–256 | Cite as

Solution Structure of an Antifreeze Protein CfAFP-501 from Choristoneura fumiferana

  • Congmin Li
  • Xianrong Guo
  • Zongchao Jia
  • Bin Xia
  • Changwen JinEmail author
NMR structure note

Abstract

Antifreeze proteins (AFPs) are widely employed by various organisms as part of their overwintering survival strategy. AFPs have the unique ability to suppress the freezing point of aqueous solution and inhibit ice recrystallization through binding to the ice seed crystals and restricting their growth. The solution structure of CfAFP-501 from spruce budworm has been determined by NMR spectroscopy. Our result demonstrates that CfAFP-501 retains its rigid and highly regular structure in solution. Overall, the solution structure is similar to the crystal structure except the N- and C-terminal regions. NMR spin-relaxation experiments further indicate the overall rigidity of the protein and identify a collection of residues with greater flexibilities. Furthermore, Pro91 shows a cis conformation in solution instead of the trans conformation determined in the crystal structure.

Keywords

antifreeze protein constrains dynamics Nuclear Magnetic Resonance solution structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Case, D.A.,  et al. 2002AMBER 7University of CaliforniaSan Francisco, CAGoogle Scholar
  2. Cornilescu, G.,  et al. 1999J. Biomol. NMR13289302CrossRefPubMedGoogle Scholar
  3. Delaglio, F.,  et al. 1995J. Biomol. NMR6277293CrossRefPubMedGoogle Scholar
  4. Doucet, D.,  et al. 2000Eur. J. Biochem.26760826088CrossRefPubMedGoogle Scholar
  5. Farrow, N.A.,  et al. 1994Biochemistry3359846003CrossRefPubMedGoogle Scholar
  6. Fletcher, G.L.,  et al. 2001Annu. Rev. Physiol.63359390CrossRefPubMedGoogle Scholar
  7. Gauthier, S.Y.,  et al. 1998Eur. J. Biochem.258445453CrossRefPubMedGoogle Scholar
  8. Graether, S.P.,  et al. 2000Nature406325328CrossRefPubMedGoogle Scholar
  9. Graether, S.P.,  et al. 2003J. Mol. Biol.32711551168CrossRefPubMedGoogle Scholar
  10. Graether, S.P., Sykes, B.D. 2004Eur. J. Biochem.27132853296CrossRefPubMedGoogle Scholar
  11. Güntert, P.,  et al. 1997J. Mol. Biol.273283298CrossRefPubMedGoogle Scholar
  12. Jia, Z., Davies, P.L. 2002Trends Biochem. Sci.27101106CrossRefPubMedGoogle Scholar
  13. Johnson, B.A., Blevins, R.A. 1994J. Biomol. NMR4603614CrossRefGoogle Scholar
  14. Koradi, R.,  et al. 1996J. Mol. Graph.145155PubMedGoogle Scholar
  15. Laskowski, R.A.,  et al. 1996J. Biomol. NMR8477486CrossRefPubMedGoogle Scholar
  16. Leinala, E.K.,  et al. 2002aStructure10619627CrossRefGoogle Scholar
  17. Leinala, E.K.,  et al. 2002bJ. Biol. Chem.2773334933352CrossRefGoogle Scholar
  18. Li, C., Jin, C. 2004J. Biomol. NMR30101102CrossRefPubMedGoogle Scholar
  19. Liou, Y.C.,  et al. 2000Nature406322324CrossRefPubMedGoogle Scholar
  20. Marshall, C.B.,  et al. 2004Biochemistry431163711646CrossRefPubMedGoogle Scholar
  21. Schubert, M.,  et al. 2002J. Biomol. NMR24149154CrossRefPubMedGoogle Scholar
  22. Wishart, D.S., Sykes, B.D. 1994J. Biomol. NMR4171180CrossRefPubMedGoogle Scholar
  23. Wüthrich, K. 1986NMR of Proteins and Nucleic AcidsWileyNew York, NYGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Congmin Li
    • 1
    • 2
  • Xianrong Guo
    • 1
    • 2
  • Zongchao Jia
    • 4
  • Bin Xia
    • 1
    • 2
    • 3
  • Changwen Jin
    • 1
    • 2
    • 3
    Email author
  1. 1.Beijing Nuclear Magnetic Resonance CenterCanada
  2. 2.College of Chemistry and Molecular EngineeringCanada
  3. 3.College of Life SciencesPeking UniversityBeijingChina
  4. 4.Department of BiochemistryQueen’s UniversityKingstonCanada

Personalised recommendations