Journal of Biomolecular NMR

, Volume 32, Issue 1, pp 71–81

Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

  • Hamid R. Eghbalnia
  • Liya Wang
  • Arash Bahrami
  • Amir Assadi
  • John L. Markley
Article

Abstract

We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model (“PECAN”, Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

Keywords

chemical shifts protein secondary structure statistical energy model statistical decision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.pdf (629 kb)
Supplementary material

References

  1. Albrecht, M., Tosatto, S.C., Lengauer, T., Valle, G. 2003Protein Eng.16459462CrossRefPubMedGoogle Scholar
  2. Besag, J. 1974J. R. Stat. Soc.36192236Google Scholar
  3. Braun, D., Wider, G., Wuthrich, K. 1994J. Am. Chem. Soc.11684668469CrossRefGoogle Scholar
  4. Carter, P., Andersen, C.A., Rost, B. 2003Nucleic Acids Res.3132933295CrossRefPubMedGoogle Scholar
  5. Chentsov, N.N. 1982Statistical Decision Rules and Optimal InferenceAmerican Mathematical SocietyProvidence, RIGoogle Scholar
  6. Cornilescu, G., Delaglio, F., Bax, A. 1999J. Biomol. NMR13289302CrossRefPubMedGoogle Scholar
  7. Hobohm, U., Sander, C. 1994Protein Sci.3522524PubMedGoogle Scholar
  8. Hung, L.H., Samudrala, R. 2003Protein Science12288295CrossRefPubMedGoogle Scholar
  9. Iwadate, M., Asakura, T., Williamson, M.P. 1999J. Biomol. NMR13199211CrossRefPubMedGoogle Scholar
  10. Janyszek, H., Mrugal-a, R. 1989Phys. Rev. A396515CrossRefPubMedGoogle Scholar
  11. Jiang, F. 2003Protein Eng.16651657CrossRefPubMedGoogle Scholar
  12. Kabsch, W., Sander, C. 1983Biopolymers2225772637PubMedGoogle Scholar
  13. Kuszewski, J., Gronenborn, A.M., Clore, G.M. 1996Protein Sci.510671080PubMedGoogle Scholar
  14. Labudde, D., Leitner, D., Kruger, M., Oschkinat, H. 2003J. Biomol. NMR254153CrossRefPubMedGoogle Scholar
  15. Le, H., Oldfield, E. 1994J. Biomol. NMR4341348CrossRefPubMedGoogle Scholar
  16. Lesk, A.M., Rose, G.D. 1981Proc. Natl. Acad. Sci. USA7843044308PubMedGoogle Scholar
  17. Levin, J.M. 1997Protein Eng.10771776CrossRefPubMedGoogle Scholar
  18. Luginbuhl, P., Szyperski, T., Wuthrich, K. 1995J. Magn. Reson. B109229233CrossRefGoogle Scholar
  19. Lukin, J.A., Gove, A.P., Talukdar, S.N., Ho, C. 1997J. Biomol. NMR9151166CrossRefPubMedGoogle Scholar
  20. Markley, J.L., Meadows, D.H., Jardetzky, O. 1967J. Mol. Biol.272535CrossRefPubMedGoogle Scholar
  21. Moult, J. 1997Curr. Opin. Struct. Biol.7194199CrossRefPubMedGoogle Scholar
  22. Przytycka, T., Aurora, R., Rose, G.D. 1999Nat. Struct. Biol.6672682CrossRefPubMedGoogle Scholar
  23. Reiley, M.D., Thanabal, V., Omecinsky, D.O. 1992J. Am. Chem. Soc.11462516252CrossRefGoogle Scholar
  24. Riis, S.K., Krogh, A. 1996J. Comput. Biol.3163183PubMedGoogle Scholar
  25. Ruppeiner, G. 1995Rev. Mod. Phys.67605CrossRefGoogle Scholar
  26. Salamov, A.A., Solovyev, V.V. 1995J. Mol. Biol.2471115CrossRefPubMedGoogle Scholar
  27. Salzberg, S., Cost, S. 1992J. Mol. Biol.227371374CrossRefPubMedGoogle Scholar
  28. Schwarzinger, S., Kroon, G.J., Foss, T.R., Wright, P.E., Dyson, H.J. 2000J. Biomol. NMR184348CrossRefPubMedGoogle Scholar
  29. Sibley, A.B., Cosman, M., Krishnan, V.V. 2003Biophys. J.8412231227PubMedGoogle Scholar
  30. Silverman, B.W. 1986Density Estimation for Statistics and Data Analysis Chapman and HallNew York, NYGoogle Scholar
  31. Spera, S., Bax, A. 1991J. Am. Chem. Soc.11354905492CrossRefGoogle Scholar
  32. Spitzer, F. 1971Am. Math. Mon.78142154Google Scholar
  33. Sternlicht, H., Wilson, D. 1967Biochemistry628812892CrossRefPubMedGoogle Scholar
  34. Wang, Y., Jardetzky, O. 2002Protein Sci.11852861CrossRefPubMedGoogle Scholar
  35. Wishart, D.S., Case, D.A. 2001Methods Enzymol.338334PubMedGoogle Scholar
  36. Wishart, D.S., Sykes, B.D. 1994J. Biomol. NMR4171180CrossRefPubMedGoogle Scholar
  37. Wishart, D.S., Sykes, B.D., Richards, F.M. 1991J. Mol. Biol.222311333CrossRefPubMedGoogle Scholar
  38. Yi, T.M., Lander, E.S. 1993J. Mol. Biol.23211171129CrossRefPubMedGoogle Scholar
  39. Zhang, X., Mesirov, J.P., Waltz, D.L. 1992J. Mol. Biol.22510491063CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hamid R. Eghbalnia
    • 1
    • 2
  • Liya Wang
    • 1
    • 3
    • 4
  • Arash Bahrami
    • 1
    • 3
    • 4
  • Amir Assadi
    • 2
  • John L. Markley
    • 1
    • 3
    • 4
  1. 1.Biochemistry DepartmentNational Magnetic Resonance Facility at MadisonMadisonUSA
  2. 2.Mathematics DepartmentUniversity of Wisconsin–MadisonMadisonUSA
  3. 3.Center for Eukaryotic Structural GenomicsUniversity of Wisconsin–MadisonMadisonUSA
  4. 4.Graduate Program in BiophysicsUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations