Advertisement

Journal of Biomolecular NMR

, Volume 33, Issue 3, pp 163–174 | Cite as

Determination of 13C CSA Tensors: Extension of the Model-independent Approach to an RNA Kissing Complex Undergoing Anisotropic Rotational Diffusion in Solution

  • Sapna Ravindranathan
  • Chul-Hyun Kim
  • Geoffrey Bodenhausen
Article

Abstract

Chemical shift anisotropy (CSA) tensor parameters have been determined for the protonated carbons of the purine bases in an RNA kissing complex in solution by extending the model-independent approach [Fushman, D., Cowburn, D. (1998) J. Am. Chem. Soc. 120, 7109–7110]. A strategy for determining CSA tensor parameters of heteronuclei in isolated X–H two-spin systems (X = 13C or 15N) in molecules undergoing anisotropic rotational diffusion is presented. The original method relies on the fact that the ratio κ2=R 2 auto /R 2 cross of the transverse auto- and cross-correlated relaxation rates involving the X CSA and the X–H dipolar interaction is independent of parameters related to molecular motion, provided rotational diffusion is isotropic. However, if the overall motion is anisotropic κ2 depends on the anisotropy D ||/D of rotational diffusion. In this paper, the field dependence of both κ2 and its longitudinal counterpart κ1=R 1 auto /R 1 cross are determined. For anisotropic rotational diffusion, our calculations show that the average κav = 1/2 (κ12), of the ratios is largely independent of the anisotropy parameter D ||/D . The field dependence of the average ratio κav may thus be utilized to determine CSA tensor parameters by a generalized model-independent approach in the case of molecules with an overall motion described by an axially symmetric rotational diffusion tensor.

Keywords

anisotropic rotational diffusion chemical shift anisotropy tensors cross-correlation model-independent approach NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. 1961Principles of Nuclear MagnetismClarendon PressOxford, UKGoogle Scholar
  2. Boisbouvier, J., Brutscher, B., Simorre, J-P., Marion, D. 1999J. Biomol. NMR18241252Google Scholar
  3. Boisbouvier, J., Brutscher, B., Pardi, A., Marion, D., Simorre, J. 2000J. Am. Chem. Soc.12267796780CrossRefGoogle Scholar
  4. Boyd, R., Redfield, C. 1998J. Am. Chem. Soc.12096929693Google Scholar
  5. Boyd, R., Redfield, C. 1999J. Am. Chem. Soc.12174417442Google Scholar
  6. Brutscher, B. 2000Concept. Magn. Reson.12207229CrossRefGoogle Scholar
  7. Brutscher, B., Bruschweiler, R., Ernst, R.R. 1997Biochemistry361304313053CrossRefGoogle Scholar
  8. Cisnetti, F., Loth, K., Pelupessy, P., Bodenhausen, G. 2004Chem. Phys. Chem.5807814Google Scholar
  9. Cornilescu, G., Bax, A. 2000J. Am. Chem. Soc.1221014310154Google Scholar
  10. Czernek, J. 2001J. Phys. Chem. A10513571365CrossRefGoogle Scholar
  11. Czernek, J., Fiala, R., Sklenar, V. 2000J. Magn. Reson.145142146CrossRefGoogle Scholar
  12. Damberg, P., Javert, J., Allard, P., Graslund, A. 1999J. Biomol. NMR152737CrossRefGoogle Scholar
  13. Damberg, P., Javert, J., Graslund, A. 2005J. Am. Chem. Soc.12719952005CrossRefGoogle Scholar
  14. Dejaegere, A.P., Case, D.A. 1998J. Phys. Chem. A10252805289CrossRefGoogle Scholar
  15. Dittmer, J., Kim, C-H., Bodenhausen, G. 2003J. Biomol. NMR26259275CrossRefGoogle Scholar
  16. Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A., Kay, L.E. 1995J. Biomol. NMR6153162CrossRefGoogle Scholar
  17. Fushman, D., Cowburn, D. 1998J. Am. Chem. Soc.12071097110Google Scholar
  18. Fushman, D., Cowburn, D. 1999J. Biomol. NMR.13139147CrossRefGoogle Scholar
  19. Fushman, D., Tjandra, N., Cowburn, D. 1998J. Am. Chem. Soc.1201094710952Google Scholar
  20. Ghosh, R., Marino, J.P., Wiberg, K.B., Prestegard, J.H. 1994J. Am. Chem. Soc.11688278828CrossRefGoogle Scholar
  21. Ghosh, R., Huang, K., Prestegard, J.H. 1998J. Magn. Reson.135487499Google Scholar
  22. Goldman, M. 1984J. Magn. Reson.60437452Google Scholar
  23. Haberkorn, R.A., Stark, R.E., Willigen, H., Griffin, R.G. 1981J. Am. Chem. Soc.10325342539CrossRefGoogle Scholar
  24. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A., Torchia, D.A. 1992J. Magn. Reson.97359375Google Scholar
  25. Kim, C.H., Tinoco, I. 2000Proc. Natl. Acad. Sci.9793969401Google Scholar
  26. Kojima, C., Ono, A., Kainosho, M., James, T.L. 1999J. Magn. Reson.136169175CrossRefGoogle Scholar
  27. Oas, T.G., Hartzell, C.J., Dahlquist, F.W., Drobny, G.P. 1987J. Am. Chem. Soc.10959625966Google Scholar
  28. Ottiger, M., Tjandra, N., Bax, A. 1997J. Am. Chem. Soc.11998259830Google Scholar
  29. Pang, Y., Zuiderweg, E.R.P. 2000J. Am. Chem. Soc.12248414842CrossRefGoogle Scholar
  30. Ravindranathan, S., Kim, C-H., Bodenhausen, G. 2003J. Biomol. NMR27365375CrossRefGoogle Scholar
  31. Richter, C., Griesinger, C., Felli, I., Cole, P.T., Varani, G., Schwalbe, H. 1999J. Biomol. NMR15241250CrossRefGoogle Scholar
  32. Sitkoff, D., Case, D.A. 1998Prog. Nucl. Magn. Reson. Spectrosc.32165190Google Scholar
  33. Spera, S., Bax, A. 1991J. Am. Chem. Soc.11354905492CrossRefGoogle Scholar
  34. Stueber, D., Grant, D.M. 2002J. Am. Chem. Soc.1241053910551CrossRefGoogle Scholar
  35. Szilagyi, L. 1995Prog. Nucl. Magn. Reson. Spectrosc.27325443Google Scholar
  36. Tessari, M., Vis, H., Boelens, R., Kaptein, R., Vuister, G.W. 1997J. Am. Chem. Soc.11989858990CrossRefGoogle Scholar
  37. Tjandra, N., Szabo, A., Bax, A. 1996J. Am. Chem. Soc.11869866991Google Scholar
  38. Tjandra, N., Bax, A. 1997aJ. Am. Chem. Soc.11980768082Google Scholar
  39. Tjandra, N., Bax, A. 1997bJ. Am. Chem. Soc.11995769577Google Scholar
  40. Wijmenga, S.S., Buuren, B.N.M. 1998Prog. Nucl. Magn. Reson. Spectrosc.32287387Google Scholar
  41. Woessner, D.E. 1962J. Chem. Phys.3647654Google Scholar
  42. Yao, X., Hong, M. 2002J. Am. Chem. Soc.12427302738CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Sapna Ravindranathan
    • 1
  • Chul-Hyun Kim
    • 2
  • Geoffrey Bodenhausen
    • 3
    • 4
  1. 1.Central NMR FacilityNational Chemical LaboratoryPuneIndia
  2. 2.Department of Chemistry and BiochemistryCalifornia State UniversityHaywardUSA
  3. 3.Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  4. 4.Département de Chimie, associé au CNRSEcole Normale SupérieureParis Cedex 05France

Personalised recommendations