Journal of Biomolecular NMR

, Volume 32, Issue 1, pp 13–22 | Cite as

Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications

  • Liya Wang
  • Hamid R. EghbalniaEmail author
  • Arash Bahrami
  • John L. Markley


Statistical analysis reveals that the set of differences between the secondary shifts of the α- and β-carbons for residues i of a protein (Δδ13Cαi- Δδ13Cβi) provides the means to detect and correct referencing errors for 1H and 13C nuclei within a given dataset. In a correctly referenced protein dataset, linear regression plots of Δδ13Cαi,Δδ13Cβi, or Δδ1Hαi vs. (Δδ13Cαi- Δδ13Cβi) pass through the origin from two directions, the helix-to-coil and strand-to-coil directions. Thus, linear analysis of chemical shifts (LACS) can be used to detect referencing errors and to recalibrate the 1H and 13C chemical shift scales if needed. The analysis requires only that the signals be identified with distinct residue types (intra-residue spin systems). LACS allows errors in calibration to be detected and corrected in advance of sequence-specific assignments and secondary structure determinations. Signals that do not fit the linear model (outliers) deserve scrutiny since they could represent errors in identifying signals with a particular residue, or interesting features such as a cis-peptide bond. LACS provides the basis for the automated detection of such features and for testing reassignment hypotheses. Early detection and correction of errors in referencing and spin system identifications can improve the speed and accuracy of chemical shift assignments and secondary structure determinations. We have used LACS to create a database of offset-corrected chemical shifts corresponding to nearly 1800 BMRB entries: 300 with and 1500 without corresponding three-dimensional (3D) structures. This database can serve as a resource for future analysis of the effects of amino acid sequence and protein secondary and tertiary structure on NMR chemical shifts.

Key words

carbon-13 chemical shifts linear analysis of chemical shifts (LACS) protein backbone geometry proton chemical shifts RefDB TALOS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.pdf (125 kb)
Supplementary material


  1. Barnett, V., Lewis, T. 1994Outliers in Statistical DataWiley & SonsChichester New YorkGoogle Scholar
  2. Baxter, N.J., Williamson, M.P. 1997J. Biomol. NMR9359369CrossRefPubMedGoogle Scholar
  3. Blanchard, L., Hunter, C.N., Williamson, M.P. 1997J. Biomol. NMR9389395CrossRefPubMedGoogle Scholar
  4. Cornilescu, G., Delaglio, F., Bax, A. 1999J. Biomol. NMR13289302CrossRefPubMedGoogle Scholar
  5. Haigh, C.W., Mallion, R.B. 1979Prog. Nucl. Mag. Res. Sp.13303CrossRefGoogle Scholar
  6. Holland, P.W., Welsch, R.E. 1977Commun. Stat. Theor. MethodsA6813827Google Scholar
  7. Hung, L.H., Samudrala, R. 2003Protein Sci.12288295CrossRefPubMedGoogle Scholar
  8. Iwadate, M., Asakura, T., Williamson, M.P. 1999J. Biomol. NMR13199211CrossRefPubMedGoogle Scholar
  9. Kabsch, W., Sander, C. 1983Biopolymers2225772637PubMedGoogle Scholar
  10. Le, H., Oldfield, E. 1994J. Biomol. NMR4341348CrossRefPubMedGoogle Scholar
  11. Mahalanobis, P.C. 1936Proc. Natl. Inst. Sci.124955Google Scholar
  12. Markley, J.L., Meadows, D.H., Jardetzky, O. 1967J. Mol. Biol.272535CrossRefPubMedGoogle Scholar
  13. Moseley, H.N., Sahota, G., Montelione, G.T. 2004J. Biomol. NMR28341355CrossRefPubMedGoogle Scholar
  14. Neal, S., Nip, A.M., Zhang, H., Wishart, D.S. 2003J. Biomol. NMR26215240CrossRefPubMedGoogle Scholar
  15. Osapay, K., Case, D.A. 1991J. Am. Chem. Soc.11394369444CrossRefGoogle Scholar
  16. Osapay, K., Case, D.A. 1994J. Biomol. NMR4215230PubMedGoogle Scholar
  17. Reiley, M.D., Thanabal, V., Omecinsky, D.O. 1992J. Am. Chem. Soc.11462516252CrossRefGoogle Scholar
  18. Schwarzinger, S., Kroon, G.J., Foss, T.R., Chung, J., Wright, P.E., Dyson, H.J. 2001J. Am. Chem. Soc.12329702978CrossRefPubMedGoogle Scholar
  19. Seavey, B.R., Farr, E.A., Westler, W.M., Markley, J.L. 1991J. Biomol. NMR1217236CrossRefPubMedGoogle Scholar
  20. Spera, S., Bax, A. 1991J. Am. Chem. Soc.11354905492CrossRefGoogle Scholar
  21. Sternlicht, H., Wilson, D. 1967Biochemistry628812892CrossRefPubMedGoogle Scholar
  22. Wang, Y., Jardetzky, O. 2002Protein Sci.11852861CrossRefPubMedGoogle Scholar
  23. Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S., Sykes, B.D. 1995J. Biomol. NMR56781CrossRefPubMedGoogle Scholar
  24. Wishart, D.S., Case, D.A. 2001Methods Enzymol.338334PubMedGoogle Scholar
  25. Wishart, D.S., Nip, A.M. 1998Biochem. Cell Biol.76153163CrossRefPubMedGoogle Scholar
  26. Wishart, D.S., Sykes, B.D. 1994J. Biomol. NMR4171180CrossRefPubMedGoogle Scholar
  27. Wishart, D.S., Sykes, B.D., Richards, F.M. 1991J. Mol. Biol.222311333CrossRefPubMedGoogle Scholar
  28. Zhang, H., Neal, S., Wishart, D.S. 2003J. Biomol. NMR25173195CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Liya Wang
    • 1
    • 2
    • 3
  • Hamid R. Eghbalnia
    • 1
    • 4
    Email author
  • Arash Bahrami
    • 1
    • 2
    • 3
  • John L. Markley
    • 1
    • 2
    • 3
  1. 1.National Magnetic Resonance Facility at MadisonBiochemistry DepartmentMadisonUSA
  2. 2.Center for Eukaryotic Structural GenomicsBiochemistry DepartmentMadisonUSA
  3. 3.Graduate Program in BiophysicsUniversity of Wisconsin--MadisonMadisonUSA
  4. 4.Mathematics DepartmentUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations