Abstract
Statistical analysis reveals that the set of differences between the secondary shifts of the α- and β-carbons for residues i of a protein (Δδ13Cαi- Δδ13Cβi) provides the means to detect and correct referencing errors for 1H and 13C nuclei within a given dataset. In a correctly referenced protein dataset, linear regression plots of Δδ13Cαi,Δδ13Cβi, or Δδ1Hαi vs. (Δδ13Cαi- Δδ13Cβi) pass through the origin from two directions, the helix-to-coil and strand-to-coil directions. Thus, linear analysis of chemical shifts (LACS) can be used to detect referencing errors and to recalibrate the 1H and 13C chemical shift scales if needed. The analysis requires only that the signals be identified with distinct residue types (intra-residue spin systems). LACS allows errors in calibration to be detected and corrected in advance of sequence-specific assignments and secondary structure determinations. Signals that do not fit the linear model (outliers) deserve scrutiny since they could represent errors in identifying signals with a particular residue, or interesting features such as a cis-peptide bond. LACS provides the basis for the automated detection of such features and for testing reassignment hypotheses. Early detection and correction of errors in referencing and spin system identifications can improve the speed and accuracy of chemical shift assignments and secondary structure determinations. We have used LACS to create a database of offset-corrected chemical shifts corresponding to nearly 1800 BMRB entries: 300 with and 1500 without corresponding three-dimensional (3D) structures. This database can serve as a resource for future analysis of the effects of amino acid sequence and protein secondary and tertiary structure on NMR chemical shifts.
This is a preview of subscription content, log in to check access.
References
V. Barnett T. Lewis (1994) Outliers in Statistical Data Wiley & Sons Chichester New York
N.J. Baxter M.P. Williamson (1997) J. Biomol. NMR 9 359–369 10.1023/A:1018334207887 9255942
L. Blanchard C.N. Hunter M.P. Williamson (1997) J. Biomol. NMR 9 389–395 10.1023/A:1018394410613 9255943
G. Cornilescu F. Delaglio A. Bax (1999) J. Biomol. NMR 13 289–302 10.1023/A:1008392405740 10212987
C.W. Haigh R.B. Mallion (1979) Prog. Nucl. Mag. Res. Sp. 13 303 10.1016/0079-6565(79)80010-2
P.W. Holland R.E. Welsch (1977) Commun. Stat. Theor. Methods A6 813–827
L.H. Hung R. Samudrala (2003) Protein Sci. 12 288–295 10.1110/ps.0222303 12538892
M. Iwadate T. Asakura M.P. Williamson (1999) J. Biomol. NMR 13 199–211 10.1023/A:1008376710086 10212983
W. Kabsch C. Sander (1983) Biopolymers 22 2577–2637 6667333
H. Le E. Oldfield (1994) J. Biomol. NMR 4 341–348 10.1007/BF00179345 8019141
P.C. Mahalanobis (1936) Proc. Natl. Inst. Sci. 12 49–55
J.L. Markley D.H. Meadows O. Jardetzky (1967) J. Mol. Biol. 27 25–35 10.1016/0022-2836(67)90349-X 6033611
H.N. Moseley G. Sahota G.T. Montelione (2004) J. Biomol. NMR 28 341–355 10.1023/B:JNMR.0000015420.44364.06 14872126
S. Neal A.M. Nip H. Zhang D.S. Wishart (2003) J. Biomol. NMR 26 215–240 10.1023/A:1023812930288 12766419
K. Osapay D.A. Case (1991) J. Am. Chem. Soc. 113 9436–9444 10.1021/ja00025a002
K. Osapay D.A. Case (1994) J. Biomol. NMR 4 215–230 8019135
M.D. Reiley V. Thanabal D.O. Omecinsky (1992) J. Am. Chem. Soc. 114 6251–6252 10.1021/ja00041a056
S. Schwarzinger G.J. Kroon T.R. Foss J. Chung P.E. Wright H.J. Dyson (2001) J. Am. Chem. Soc. 123 2970–2978 10.1021/ja003760i 11457007
B.R. Seavey E.A. Farr W.M. Westler J.L. Markley (1991) J. Biomol. NMR 1 217–236 10.1007/BF01875516 1841696
S. Spera A. Bax (1991) J. Am. Chem. Soc. 113 5490–5492 10.1021/ja00014a071
H. Sternlicht D. Wilson (1967) Biochemistry 6 2881–2892 10.1021/bi00861a032 6055199
Y. Wang O. Jardetzky (2002) Protein Sci. 11 852–861 10.1110/ps.3180102 11910028
D.S. Wishart C.G. Bigam A. Holm R.S. Hodges B.D. Sykes (1995) J. Biomol. NMR 5 67–81 10.1007/BF00211764 7881273
D.S. Wishart D.A. Case (2001) Methods Enzymol. 338 3–34 11460554
D.S. Wishart A.M. Nip (1998) Biochem. Cell Biol. 76 153–163 10.1139/bcb-76-2-3-153 9923684
D.S. Wishart B.D. Sykes (1994) J. Biomol. NMR 4 171–180 10.1007/BF00175245 8019132
D.S. Wishart B.D. Sykes F.M. Richards (1991) J. Mol. Biol. 222 311–333 10.1016/0022-2836(91)90214-Q 1960729
H. Zhang S. Neal D.S. Wishart (2003) J. Biomol. NMR 25 173–195 10.1023/A:1022836027055 12652131
Author information
Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Wang, L., Eghbalnia, H., Bahrami, A. et al. Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications. J Biomol NMR 32, 13–22 (2005). https://doi.org/10.1007/s10858-005-1717-0
Received:
Accepted:
Issue Date:
Key words
- carbon-13 chemical shifts
- linear analysis of chemical shifts (LACS)
- protein backbone geometry
- proton chemical shifts
- RefDB
- TALOS