Journal of Biomolecular NMR

, Volume 33, Issue 1, pp 1–14 | Cite as

Optimization of resolution and sensitivity of 4D NOESY using Multi-dimensional Decomposition

  • T. Luan
  • V. Jaravine
  • A. Yee
  • C. H. Arrowsmith
  • V. Yu. OrekhovEmail author


Highly resolved multi-dimensional NOE data are essential for rapid and accurate determination of spatial protein structures such as in structural genomics projects. Four-dimensional spectra contain almost no spectral overlap inherently present in lower dimensionality spectra and are highly amenable to application of automated routines for spectral resonance location and assignment. However, a high resolution 4D data set using conventional uniform sampling usually requires unacceptably long measurement time. Recently we have reported that the use of non-uniform sampling and multi-dimensional decomposition (MDD) can remedy this problem. Here we validate accuracy and robustness of the method, and demonstrate its usefulness for fully protonated protein samples. The method was applied to 11 kDa protein PA1123 from structural genomics pipeline. A systematic evaluation of spectral reconstructions obtained using 15–100% subsets of the complete reference 4D 1H–13C–13C–1H NOESY spectrum has been performed. With the experimental time saving of up to six times, the resolution and the sensitivity per unit time is shown to be similar to that of the fully recorded spectrum. For the 30% data subset we demonstrate that the intensities in the reconstructed and reference 4D spectra correspond with a correlation coefficient of 0.997 in the full range of spectral amplitudes. Intensities of the strong, middle and weak cross-peaks correlate with coefficients 0.9997, 0.9965, and 0.83. The method does not produce false peaks. 2% of weak peaks lost in the 30% reconstruction is in line with theoretically expected noise increase for the shorter measurement time. Together with good accuracy in the relative line-widths these translate to reliable distance constrains derived from sparsely sampled, high resolution 4D NOESY data.

Key words

NMR NOESY non-uniform sampling structural genomics 


3DD and 4DD

MDD for three and four dimensions




linear prediction


multi-dimensional decomposition


number of spectral components




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barna, J.C.J, Laue, E.D., Mayger, M.R., Skilling, J., Worrall, S.J.P. 1987J. Magn. Reson.736977Google Scholar
  2. Bax, A. 1994Curr. Opin. Struct. Biol.4738744CrossRefGoogle Scholar
  3. Christendat, D., Yee, A., Dharamsi, A., Kluger, Y., Savchenko, A., Cort, J.R., Booth, V., Mackereth, C.D., Saridakis, V., Ekiel, I., Kozlov, G., Maxwell, K.L., Wu, N., McIntosh, L.P., Gehring, K., Kennedy, M.A., Davidson, A.R., Pai, E.F., Gerstein, M., Edwards, A.M., Arrowsmith, C.H. 2000Nat. Struct. Biol.7903909CrossRefPubMedGoogle Scholar
  4. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., Bax, A. 1995J. Biomol. NMR6277293Google Scholar
  5. Ernst, R.R. 1992Biosci. Rep.12143187CrossRefPubMedGoogle Scholar
  6. Fernandez, C., Wider, G. 2003Curr. Opin. Struct. Biol.13570580CrossRefPubMedGoogle Scholar
  7. Freeman, R., Kupče, E. 2003J. Biomol. NMR27101113CrossRefPubMedGoogle Scholar
  8. Gerstein, M., Edwards, A., Arrowsmith, C.H., Montelione, G.T. 2003Science29916631663CrossRefPubMedGoogle Scholar
  9. Goto, N.K., Kay, L.E. 2000Curr. Opin. Struct. Biol.10585592CrossRefPubMedGoogle Scholar
  10. Gutmanas, A., Jarvoll, P., Orekhov, V.Y., Billeter, M. 2002J. Biomol. NMR24191201CrossRefPubMedGoogle Scholar
  11. Hoch, J.C., Stern, A.S. 1996NMR Data ProcessiongWiley-LissNew YorkGoogle Scholar
  12. Hoch, J.C., Stern, A.S. 2001Methods Enzymol.338159178PubMedGoogle Scholar
  13. Ibrahimov, I. 2002Numer. Linear Algebr. Appl.9551565CrossRefGoogle Scholar
  14. Kennedy, M.A., Montelione, G.T., Arrowsmith, C.H., Markley, J.L. 2002J. Struct. Funct. Genomics2155169CrossRefPubMedGoogle Scholar
  15. Kruskal, J.B. 1977Linear Algebra Appl.1895138CrossRefGoogle Scholar
  16. Laue, E.D., Mayger, M.R., Skilling, J., Staunton, J. 1986J. Magn. Reson.681429Google Scholar
  17. Orekhov, V.Y., Ibraghimov, I., Billeter, M. 2003J.␣Biomol. NMR27165173CrossRefPubMedGoogle Scholar
  18. Pervushin, K., Riek, R., Wider, G., Wüthrich, K. 1997Proc. Natl. Acad. Sci. USA941236612371CrossRefPubMedGoogle Scholar
  19. Peti, W., Etezady-Esfajani, T., Herrmann, T., Klock, H.E., Lesley, S.A., Wüthrich, K. 2004J. Struct. Funct. Genomics5205215CrossRefPubMedGoogle Scholar
  20. Rovnyak, D., Frueh, D.P., Sastry, M., Sun, Z.Y.J., Stern, A.S., Hoch, J.C., Wagner, G. 2004J. Magn. Reson.1701521CrossRefPubMedGoogle Scholar
  21. Schmieder, P., Stern, A.S., Wagner, G., Hoch, J.C. 1994J.␣Biomol. NMR4483490Google Scholar
  22. Szyperski, T., Yeh, D.C., Sukumaran, D.K., Moseley, H.N.B., Montelione, G.T. 2002Proc. Natl. Acad. Sci. USA9980098014CrossRefPubMedGoogle Scholar
  23. Tikhonov, A.N., Samarskij, A.A. 1990Equations of Mathematical PhysicsDoverNew YorkGoogle Scholar
  24. Tugarinov, V., Hwang, P.M., Kay, L.E. 2004aAnnu. Rev. Biochem.73107146CrossRefGoogle Scholar
  25. Tugarinov, V., Kay, L.E., Ibraghimov, I.V, Orekhov, V.Y. 2005J. Am. Chem. Soc.12727672775CrossRefPubMedGoogle Scholar
  26. Tugarinov, V., Sprangers, R., Kay, L.E. 2004bJ. Am. Chem. Soc.12649214925CrossRefGoogle Scholar
  27. Vuister, G.W., Clore, G.M., Gronenborn, A.M., Powers, R., Garrett, D.S., Tschudin, R., Bax, A. 1993J. Magn. Reson. B101210213CrossRefGoogle Scholar
  28. Wüthrich, K. 2003J. Biomol. NMR271339CrossRefPubMedGoogle Scholar
  29. Yamazaki, T., Lee, W., Revington, M., Mattiello, D.L., Dahlquist, F.W., Arrowsmith, C.H., Kay, L.E. 1994J. Am. Chem. Soc.11664646465CrossRefGoogle Scholar
  30. Yee, A., Pardee, K., Christendat, D., Savchenko, A., Edwards, A.M., Arrowsmith, C.H. 2003Acc. Chem. Res.36183189CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • T. Luan
    • 1
  • V. Jaravine
    • 1
  • A. Yee
    • 2
  • C. H. Arrowsmith
    • 2
  • V. Yu. Orekhov
    • 1
    Email author
  1. 1.The Swedish NMR centre at Göteborg UniversityGöteborgSweden
  2. 2.Northeast Structural Genomics ConsortiumOntario Cancer InstituteTorontoCanada

Personalised recommendations