Journal of Biomolecular NMR

, Volume 31, Issue 2, pp 87–95 | Cite as

A protein backbone ψ and φ angle dependence of 2J N (i),Cα1;(i -1): The new NMR experiment and quantum chemical calculations

  • Wiktor Koźmiński
  • Igor Zhukov
  • Magdalena Pecul
  • Joanna Sadlej
Article

Abstract

A new pulse sequence exploiting double- and zero-quantum evolution of two-spin 15N–13C′ coherence is proposed for the accurate measurements of 2JN( i ),Cα(i -1) coupling constants. Application of the new experiment is presented for 13C,15N-labeled ubiquitin sample. The density functional theory calculations of 2JN( i ),Cα(i -1) coupling constants have been performed to study their dependence on both ψ(i - 1) and φ(i - 1) angle in model peptides, and the results exhibit a good correlation with experimental data.

Keywords

coupling constants DFT HNCO multiple quantum evolution reduced dimensionality theoretical calculations ubiquitin Abstract 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

supp.pdf
Supplementary material

References

  1. Abragam, A. 1961Principles of Nuclear MagnetismClarendon PressOxfordGoogle Scholar
  2. Becke, A.D. 1993JChem. Phys.9856485652Google Scholar
  3. Bodenhausen, G., Ernst, R.R. 1981JMagn. Reson.45367373Google Scholar
  4. Bodenhausen, G., Ernst, R.R. 1982JAm. Chem. Soc.10413041309Google Scholar
  5. Brutscher, B., Cordier, F., Simorre, J.P., Caffrey, M.S., Marion, D. 1995JBiomol. NMR5202206Google Scholar
  6. Brutscher, B., Simorre, J.P., Caffrey, M.S., Marion, D. 1994J. Magn. Reson.B 10577–82Google Scholar
  7. Bystrov, V.F. 1976ProgrNMR Spectrosc.114181Google Scholar
  8. Case, D.A. 1999JBiomol. NMR1595102Google Scholar
  9. Cornilescu, G., Bax, A., Case, D.A. 2000J. Am. Chem. Soc.12221682171Google Scholar
  10. Cornilescu, G., Marquardt, J.L., Ottiger, M., Bax, A. 1998J. Am. Chem. Soc.12068366837Google Scholar
  11. Contreras, R.H., Peralta, J.E. 2000Prog. NMR. Spectrosc.37321425Google Scholar
  12. Contreras, R.H., Barone, V., Facelli, J., Peralta, J.E. 2003Annu. Rep. NMR Spectrosc.51167260Google Scholar
  13. Delaglio, F., Torchia, D.A., Bax, A. 1991JBiomol. NMR1439446Google Scholar
  14. Ding, K., Gronenborn, A. 2004aJMagn. Reson.167253258Google Scholar
  15. Ding, K., Gronenborn, A. 2004bJAm. Chem. Soc.12662326233Google Scholar
  16. Dunning, T.H. 1989JChem. Phys.9010071023Google Scholar
  17. Edison, A.S., Markley, J.L., Weinhold, F. 1994aJBiomol. NMR4519542Google Scholar
  18. Edison, A.S., Weinhold, F., Westler, W.M., Markley, J.L. 1994bJ. Biomol. NMR4543551Google Scholar
  19. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery Jr., J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D. J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A. 1998Gaussian98 Revision A.9.Gaussian Inc.Pittsburgh, PAGoogle Scholar
  20. Goddard, T.D. and Kneller, D.G. SPARKY 3, University of California, San Francisco.Google Scholar
  21. Harbison, G.S. 1993JAm. Chem. Soc.11530263027Google Scholar
  22. Heikkinen, S., Permi, P., Kilpeläinen, I. 2001JMagn. Reson.1485360Google Scholar
  23. Helgaker, T., Pecul, M. 2004Spin–spin coupling constants with HF and DFT methods. In Quantum Chemical Calculation of Magnetic Resonance Properties. Theory and ApplicationsKauppM. Bühl, M. and Malkin, V.G. (Eds.), Wiley-VCH, pp. 101–121Google Scholar
  24. Helgaker, T., Jensen, H.J.A., Jørgensen, P., Olsen, J., Ruud, K., Å’gren, H., Bak, K.L., Bakken, V., Christiansen, O., Coriani, S., Dahle, P., Dalskov, E.K., Enevoldsen, T., Fernandez, B., Hättig, C., Hald, K., Halkier, A., Heiberg, H., Hettema, H., Jonsson, D., Kirpekar, S., Kobayashi, R., Koch, H., Mikkelsen, K.V., Norman, P., Packer, M.J., Pedersen, T.B., Ruden, T.A., Sanchez, A., Saue, T., Sauer, S.P.A., Schimmelpfenning, B., Sylvester-Hvid, K.O., Taylor, P.R., Vahtras, O. 2001DALTONAn ab initio Electronic Structure Programrelease 1.2Google Scholar
  25. Karplus, M. 1963JAm. Chem. Soc.8528702871Google Scholar
  26. Kay, L.E., Ikura, M., Tshudin, R., Bax, A. 1990JMagn. Reson.89496514Google Scholar
  27. Kay, L.E., Keifer, P., Saarinen, T. 1992JAm. Chem. Soc.1141066310665Google Scholar
  28. Koźmiński, W., Zhukov, I. 2003JBiomol. NMR26157166Google Scholar
  29. Koźmiński, W., Zhukov, I. 2004JMagn. Reson.171338344Google Scholar
  30. Levitt, M.H. 1997JMagn. Reson.126164182Google Scholar
  31. Marion, D., Ikura, M., Tschudin, R., Bax, A. 1989JMagn. Reson.85393399Google Scholar
  32. Meissner, A., Duus, J.Ø., Sørensen, O.W. 1997JBiomol. NMR108994Google Scholar
  33. Ottiger, M., Delaglio, F., Bax, A. 1997JMagn. Reson.131373378Google Scholar
  34. Palmer III, A.G., Cavanagh, J., Wright, P.E., Rance, M. 1991JMagn. Reson.93151170Google Scholar
  35. Pecul, M., Helgaker, T. 2003IntJ. Mol. Sci.4143157Google Scholar
  36. Permi, P., Annila, A. 2000JBiomol. NMR16221227Google Scholar
  37. Permi, P., Rosevear, P.R., Annila, A. 2000JBiomol. NMR174354Google Scholar
  38. Rexroth, A., Schimdt, P., Szalma, S., Geppert, T., Schwalbe, H., Griesinger, C. 1995JAm. Chem. Soc.1171038910390Google Scholar
  39. Sattler, M., Schwedinger, M.G., Schleuchter, J., Griesinger, C. 1995JBiomol. NMR51122Google Scholar
  40. Schindler, M.M., Kutzelnigg, W. 1982JChem. Phys.7619191933Google Scholar
  41. Sitkoff, D., Case, D.A. 1997JAm. Chem. Soc.1191226212273Google Scholar
  42. States, D.J., Haberkorn, R.A., Ruben, R.J. 1982JMagn. Reson.48286292Google Scholar
  43. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J. 1994JPhys. Chem.981162311627Google Scholar
  44. Szyperski, T., Wider, G., Buschweller, J.H., Wüthrich, K. 1993aJAm. Chem. Soc.11593079308Google Scholar
  45. Szyperski, T., Wider, G., Bushweller, J.H., Wüthrich, K. 1993bJBiomol. NMR3127132Google Scholar
  46. Tjandra, N., Bax, A. 1997Science2781111–1114Google Scholar
  47. Tolman, J.R., Flanagan, J.M., Kennedy, M.A., Prestegard, J.H. 1995ProcNatl. Acad. Sci. USA9292799283Google Scholar
  48. Wienk, H.L.J., Martínez, M.M., Yalloway, G.N., Schmidt, J.M., Pérez, C., Rüterjans, H., Löhr, F. 2003JBiomol. NMR25133145Google Scholar
  49. Wirmer, J., Schwalbe, H. 2002JBiomol. NMR234755Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Wiktor Koźmiński
    • 1
  • Igor Zhukov
    • 2
  • Magdalena Pecul
    • 1
  • Joanna Sadlej
  1. 1.Department of ChemistryWarsaw UniversityWarszawaPoland
  2. 2.Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations